Soil resistance to concentrated flow and sediment yields following cropland abandonment on the Loess Plateau, China

2017 ◽  
Vol 17 (6) ◽  
pp. 1662-1671 ◽  
Author(s):  
Zheng Zhang ◽  
Qiang Li ◽  
Guobin Liu ◽  
Dengfeng Tuo
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10349
Author(s):  
Zhenguo Zhang ◽  
Mingming Wang ◽  
Jikai Liu ◽  
Xinwei Li

Identification of typical vegetation succession types and their important influencing factors is an important prerequisite to implement differential vegetation and soil management after land abandonment on the Loess Plateau, China. However, there is no reported study specifically on the identification of vegetation types and their important factors as well as the thresholds of the important factors for classification of the vegetation types, based on the medium- to long-term succession of natural vegetation after cropland abandonment. We collected vegetation and soil data on the natural vegetation with the longest 60-year-old forest communities that developed after cropland abandonment and analyzed the data using two-way indicator species analysis, detrended correspondence analysis, direct canonical correspondence analysis and classification tree model. The vegetation communities were classified into five distinct vegetation types, including Artemisia scoparia, Lespedeza davurica and Stipa bungeana, Artemisia giraldii pamp, Sophora viciifolia, Quercus liaotungensis and Biota orientalis. The years after cropland abandonment and soil C/N were further identified as important factors determining the types of vegetation. Likewise, it was observed that most of the investigated soil nutrient variables and soil texture-related variables improved with the vegetation succession while soil water in the surface layers showed a decreasing trend. These findings may provide an ecological basis for site-specific management of vegetation types after cropland abandonment in the medium-long term on the Loess Plateau. Our results encourage further exploration of vegetation succession and their important factors based on longer periods of vegetation succession after cropland abandonment under more soil and climatic conditions on the mountainous areas as the Loess Plateau.


CATENA ◽  
2020 ◽  
Vol 185 ◽  
pp. 104293 ◽  
Author(s):  
Jiaqian Sun ◽  
Gerard Govers ◽  
Mingxin Shi ◽  
Yanbin Zhai ◽  
Faqi Wu

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1264
Author(s):  
Fabing Xie ◽  
Guangju Zhao ◽  
Xingmin Mu ◽  
Peng Tian ◽  
Peng Gao ◽  
...  

Soil erosion has become the dominant environmental issue endangering sustainable development in agriculture and the ecosystem on the Loess Plateau. Determination of watershed soil erosion rates and sediment yields is essential for reasonable utilization of water resources and soil loss control. In this study, we employed unmanned aerial vehicles (UAVs) and structure-from-motion (SfM) photogrammetry to determine the sediment yields in 24 dam-controlled watersheds in the Pisha sandstone region of the northern Loess Plateau. High differences in total sediment were trapped before the check dams due to their running periods and sediment yields. The estimated specific sediment yield ranged from 34.32 t/(ha∙a) to 123.80 t/(ha∙a) with an average of 63.55 t/(ha∙a), which indicated that the Pisha sandstone region had an intense soil erosion rate. Furthermore, the modified Sediment Distributed Delivery (SEDD) model was applied to identify the erosion-prone areas in the watersheds, and the sediment retained in the check dams were used for model calibration. The performance of the model was acceptable, and the modeling results indicated that the steep Pisha sandstone was the major sediment source for the watersheds, accounting for approximately 87.37% of the sediment yield. Catchment area, erosive precipitation, and badland proportion were the key factors for sediment yield in the dam-controlled watersheds of the Pisha sandstone region, according to multiple regression analyses. These findings indicated that the modified SEDD model is very efficient in identifying spatial heterogeneities of sediment yield in the watershed but requires comprehensive calibration and validation with long-term observations. The Pisha sandstone region is still the key area of soil erosion control in the Loess Plateau, which needs more attention for soil and water conservation due to high sediment yield.


2016 ◽  
Vol 544 ◽  
pp. 238-250 ◽  
Author(s):  
Depeng Zuo ◽  
Zongxue Xu ◽  
Wenyi Yao ◽  
Shuangyan Jin ◽  
Peiqing Xiao ◽  
...  

2016 ◽  
Vol 41 (2) ◽  
pp. 139-153
Author(s):  
Weidong Zhao ◽  
Guoan Tang ◽  
Lei Ma ◽  
Jitang Zhao ◽  
Wan Zhou ◽  
...  

Although the concept of entropy in landscape evolution was proposed over 40 years ago, previous studies of geomorphic entropy paid little attention to the applications of geomorphic entropy in the erosional watershed geomorphic system on the Loess Plateau in China. Therefore, we propose a new concept of entropy called watershed geomorphic entropy (WGE) and its method of calculation based on a digital elevation model and the principles of system theory. To study the geomorphic significances of WGE, we applied the WGE to an artificial rainfall experiment that was originally designed to study erosional processes in a small open watershed geomorphic system on the Loess Plateau. Our study shows that the decrease of WGE in an open watershed geomorphic system means a gradual erosional or erosion-dominated landscape evolutional process and the change of WGE shows a perfectly positive linear correlation with the measured sediment yields of the outlet of the watershed system under our experimental conditions. In addition, to some extent, the decrease of the change of WGE also reflects the reduction of total potential energy of a specific erosional, or erosion-dominated, open watershed geomorphic system.


Sign in / Sign up

Export Citation Format

Share Document