A high-performance control algorithm based on a curvature-dependent decoupled planning approach and flatness concepts for non-holonomic mobile robots

2019 ◽  
Vol 12 (2) ◽  
pp. 181-196
Author(s):  
Oussama Boutalbi ◽  
Khier Benmahammed ◽  
Khadidja Henni ◽  
Boualem Boukezata
2016 ◽  
Vol 11 (1) ◽  
pp. 72-80
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov

In article one of possible approaches to synthezis of group control of mobile robots which is based on use of cloud computing is considered. Distinctive feature of the offered techniques is adequate reflection of specifics of a scope and the robots of tasks solved by group in architecture of control-information systems, methods of the organization of information exchange, etc. The approach offered by authors allows to increase reliability and robustness of collectives of robots, to lower requirements to airborne computers when saving summary high performance in general.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 943 ◽  
Author(s):  
Il Bae ◽  
Jaeyoung Moon ◽  
Jeongseok Seo

The convergence of mechanical, electrical, and advanced ICT technologies, driven by artificial intelligence and 5G vehicle-to-everything (5G-V2X) connectivity, will help to develop high-performance autonomous driving vehicles and services that are usable and convenient for self-driving passengers. Despite widespread research on self-driving, user acceptance remains an essential part of successful market penetration; this forms the motivation behind studies on human factors associated with autonomous shuttle services. We address this by providing a comfortable driving experience while not compromising safety. We focus on the accelerations and jerks of vehicles to reduce the risk of motion sickness and to improve the driving experience for passengers. Furthermore, this study proposes a time-optimal velocity planning method for guaranteeing comfort criteria when an explicit reference path is given. The overall controller and planning method were verified using real-time, software-in-the-loop (SIL) environments for a real-time vehicle dynamics simulation; the performance was then compared with a typical planning approach. The proposed optimized planning shows a relatively better performance and enables a comfortable passenger experience in a self-driving shuttle bus according to the recommended criteria.


2020 ◽  
Vol 90 ◽  
pp. 106133 ◽  
Author(s):  
Laura Micheli ◽  
Jonathan Hong ◽  
Simon Laflamme ◽  
Alice Alipour

Sign in / Sign up

Export Citation Format

Share Document