scholarly journals Toward a Comfortable Driving Experience for a Self-Driving Shuttle Bus

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 943 ◽  
Author(s):  
Il Bae ◽  
Jaeyoung Moon ◽  
Jeongseok Seo

The convergence of mechanical, electrical, and advanced ICT technologies, driven by artificial intelligence and 5G vehicle-to-everything (5G-V2X) connectivity, will help to develop high-performance autonomous driving vehicles and services that are usable and convenient for self-driving passengers. Despite widespread research on self-driving, user acceptance remains an essential part of successful market penetration; this forms the motivation behind studies on human factors associated with autonomous shuttle services. We address this by providing a comfortable driving experience while not compromising safety. We focus on the accelerations and jerks of vehicles to reduce the risk of motion sickness and to improve the driving experience for passengers. Furthermore, this study proposes a time-optimal velocity planning method for guaranteeing comfort criteria when an explicit reference path is given. The overall controller and planning method were verified using real-time, software-in-the-loop (SIL) environments for a real-time vehicle dynamics simulation; the performance was then compared with a typical planning approach. The proposed optimized planning shows a relatively better performance and enables a comfortable passenger experience in a self-driving shuttle bus according to the recommended criteria.

Author(s):  
Hrishikesh Dey ◽  
Rithika Ranadive ◽  
Abhishek Chaudhari

Path planning algorithm integrated with a velocity profile generation-based navigation system is one of the most important aspects of an autonomous driving system. In this paper, a real-time path planning solution to obtain a feasible and collision-free trajectory is proposed for navigating an autonomous car on a virtual highway. This is achieved by designing the navigation algorithm to incorporate a path planner for finding the optimal path, and a velocity planning algorithm for ensuring a safe and comfortable motion along the obtained path. The navigation algorithm was validated on the Unity 3D Highway-Simulated Environment for practical driving while maintaining velocity and acceleration constraints. The autonomous vehicle drives at the maximum specified velocity until interrupted by vehicular traffic, whereas then, the path planner, based on the various constraints provided by the simulator using µWebSockets, decides to either decelerate the vehicle or shift to a more secure lane. Subsequently, a splinebased trajectory generation for this path results in continuous and smooth trajectories. The velocity planner employs an analytical method based on trapezoidal velocity profile to generate velocities for the vehicle traveling along the precomputed path. To provide smooth control, an s-like trapezoidal profile is considered that uses a cubic spline for generating velocities for the ramp-up and ramp-down portions of the curve. The acceleration and velocity constraints, which are derived from road limitations and physical systems, are explicitly considered. Depending upon these constraints and higher module requirements (e.g., maintaining velocity, and stopping), an appropriate segment of the velocity profile is deployed. The motion profiles for all the use-cases are generated and verified graphically.


2018 ◽  
Vol 70 (1) ◽  
pp. 61-90 ◽  
Author(s):  
Federico Cabassi ◽  
Luca Consolini ◽  
Marco Locatelli

Author(s):  
Wael Farag ◽  

In this paper, a real-time road-Object Detection and Tracking (LR_ODT) method for autonomous driving is proposed. The method is based on the fusion of lidar and radar measurement data, where they are installed on the ego car, and a customized Unscented Kalman Filter (UKF) is employed for their data fusion. The merits of both devices are combined using the proposed fusion approach to precisely provide both pose and velocity information for objects moving in roads around the ego car. Unlike other detection and tracking approaches, the balanced treatment of both pose estimation accuracy and its real-time performance is the main contribution in this work. The proposed technique is implemented using the high-performance language C++ and utilizes highly optimized math and optimization libraries for best real-time performance. Simulation studies have been carried out to evaluate the performance of the LR_ODT for tracking bicycles, cars, and pedestrians. Moreover, the performance of the UKF fusion is compared to that of the Extended Kalman Filter fusion (EKF) showing its superiority. The UKF has outperformed the EKF on all test cases and all the state variable levels (-24% average RMSE). The employed fusion technique show how outstanding is the improvement in tracking performance compared to the use of a single device (-29% RMES with lidar and -38% RMSE with radar).


2021 ◽  
Vol 11 (16) ◽  
pp. 7225
Author(s):  
Eugenio Tramacere ◽  
Sara Luciani ◽  
Stefano Feraco ◽  
Angelo Bonfitto ◽  
Nicola Amati

Self-driving vehicles have experienced an increase in research interest in the last decades. Nevertheless, fully autonomous vehicles are still far from being a common means of transport. This paper presents the design and experimental validation of a processor-in-the-loop (PIL) architecture for an autonomous sports car. The considered vehicle is an all-wheel drive full-electric single-seater prototype. The retained PIL architecture includes all the modules required for autonomous driving at system level: environment perception, trajectory planning, and control. Specifically, the perception pipeline exploits obstacle detection algorithms based on Artificial Intelligence (AI), and the trajectory planning is based on a modified Rapidly-exploring Random Tree (RRT) algorithm based on Dubins curves, while the vehicle is controlled via a Model Predictive Control (MPC) strategy. The considered PIL layout is implemented firstly using a low-cost card-sized computer for fast code verification purposes. Furthermore, the proposed PIL architecture is compared in terms of performance to an alternative PIL using high-performance real-time target computing machine. Both PIL architectures exploit User Datagram Protocol (UDP) protocol to properly communicate with a personal computer. The latter PIL architecture is validated in real-time using experimental data. Moreover, they are also validated with respect to the general autonomous pipeline that runs in parallel on the personal computer during numerical simulation.


2021 ◽  
pp. 1-14
Author(s):  
Wael Farag

In this paper, based on the fusion of Lidar and Radar measurement data, a real-time road-Object Detection and Tracking (LR_ODT) method for autonomous driving is proposed. The lidar and radar devices are installed on the ego car, and a customized Unscented Kalman Filter (UKF) is used for their data fusion. Lidars are accurate in determining objects’ positions but significantly less accurate on measuring their velocities. However, Radars are more accurate on measuring objects velocities but less accurate on determining their positions as they have a lower spatial resolution. Therefore, the merits of both sensors are combined using the proposed fusion approach to provide both pose and velocity data for objects moving in roads precisely. The Grid-Based Density-Based Spatial Clustering of Applications with Noise (GB-DBSCAN) clustering algorithm is used to detect objects and estimate their centroids from the lidar and radar raw data. Then, the estimation of the object’s velocity as well as determining its corresponding geometrical shape is performed by the RANdom SAmple Consensus (RANSAC) algorithm. The proposed technique is implemented using the high-performance language C+⁣+ and utilizes highly optimized math and optimization libraries for best real-time performance. The performance of the UKF fusion is compared to that of the Extended Kalman Filter fusion (EKF) showing its superiority. Simulation studies have been carried out to evaluate the performance of the LR_ODT for tracking bicycles, cars, and pedestrians.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7933
Author(s):  
António Silva ◽  
Duarte Fernandes ◽  
Rafael Névoa ◽  
João Monteiro ◽  
Paulo Novais ◽  
...  

Research about deep learning applied in object detection tasks in LiDAR data has been massively widespread in recent years, achieving notable developments, namely in improving precision and inference speed performances. These improvements have been facilitated by powerful GPU servers, taking advantage of their capacity to train the networks in reasonable periods and their parallel architecture that allows for high performance and real-time inference. However, these features are limited in autonomous driving due to space, power capacity, and inference time constraints, and onboard devices are not as powerful as their counterparts used for training. This paper investigates the use of a deep learning-based method in edge devices for onboard real-time inference that is power-effective and low in terms of space-constrained demand. A methodology is proposed for deploying high-end GPU-specific models in edge devices for onboard inference, consisting of a two-folder flow: study model hyperparameters’ implications in meeting application requirements; and compression of the network for meeting the board resource limitations. A hybrid FPGA-CPU board is proposed as an effective onboard inference solution by comparing its performance in the KITTI dataset with computer performances. The achieved accuracy is comparable to the PC-based deep learning method with a plus that it is more effective for real-time inference, power limited and space-constrained purposes.


Sign in / Sign up

Export Citation Format

Share Document