The expansion of a wedge of gas into vacuum with small angle in two-dimensional isothermal flow

2016 ◽  
Vol 37 (3) ◽  
pp. 395-404
Author(s):  
Ju Ge ◽  
Wancheng Sheng
Author(s):  
J. Silcox ◽  
R. H. Wade

Recent work has drawn attention to the possibilities that small angle electron scattering offers as a source of information about the micro-structure of vacuum condensed films. In particular, this serves as a good detector of discontinuities within the films. A review of a kinematical theory describing the small angle scattering from a thin film composed of discrete particles packed close together will be presented. Such a model could be represented by a set of cylinders packed side by side in a two dimensional fluid-like array, the axis of the cylinders being normal to the film and the length of the cylinders becoming the thickness of the film. The Fourier transform of such an array can be regarded as a ring structure around the central beam in the plane of the film with the usual thickness transform in a direction normal to the film. The intensity profile across the ring structure is related to the radial distribution function of the spacing between cylinders.


2013 ◽  
Vol 21 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Hiroyuki Kishimoto ◽  
Yuya Shinohara ◽  
Yoshio Suzuki ◽  
Akihisa Takeuchi ◽  
Naoto Yagi ◽  
...  

A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm−1was thereby achieved at an X-ray energy of 8 keV.


2017 ◽  
Vol 50 (3) ◽  
pp. 951-958 ◽  
Author(s):  
Sen Chen ◽  
Juncheng E ◽  
Sheng-Nian Luo

SLADS(http://www.pims.ac.cn/Resources.html), a parallel code for direct simulations of X-ray scattering of large anisotropic dense nanoparticle systems of arbitrary species and atomic configurations, is presented. Particles can be of arbitrary shapes and dispersities, and interactions between particles are considered. Parallelization is achieved in real space for the sake of memory limitation. The system sizes attempted are up to one billion atoms, and particle concentrations in dense systems up to 0.36. Anisotropy is explored in terms of superlattices. One- and two-dimensional small-angle scattering or diffraction patterns are obtained.SLADSis validated self-consistently or against cases with analytical solutions.


1984 ◽  
Vol 22 (3) ◽  
pp. 485-500 ◽  
Author(s):  
A. Ferrero Rognoni ◽  
E. Ferracini ◽  
J. Loboda Čačkovi?? ◽  
H. Čačkovi??

Sign in / Sign up

Export Citation Format

Share Document