scholarly journals Etazene (N,N-diethyl-2-{[(4-ethoxyphenyl)methyl]-1H-benzimidazol-1-yl}-ethan-1-amine (dihydrochloride)): a novel benzimidazole opioid NPS identified in seized material: crystal structure and spectroscopic characterization

Author(s):  
Marta Siczek ◽  
Marcin Zawadzki ◽  
Miłosz Siczek ◽  
Agnieszka Chłopaś-Konowałek ◽  
Paweł Szpot

Abstract Purpose The aim of the study was to present the spectroscopic characteristics and crystal structure of the etazene—a benzimidazole opioid, which appeared on the illegal drug market in Poland in the last weeks. Methods The title compound was analyzed by X-ray crystallography as well as gas and liquid chromatography combined with mass spectrometry. Spectroscopic techniques have also been used, such as nuclear magnetic resonance, infrared and ultraviolet-visible spectroscopies. Results We presented the identification and the broad chemical characterization of etazene, a synthetic opioid that has recently been introduced on the illegal drug market. Conclusions In this paper, we described single-crystal X-ray, chromatographic and spectroscopic characterization of a synthetic opioid that emerged on the new psychoactive substance (NPS) market in Poland. To the best of our knowledge, this is the first full characterization of etazene. Analytical data presented in the work can be helpful in identification and detection of the NPS in forensic and clinical laboratories.

1990 ◽  
Vol 45 (10) ◽  
pp. 1416-1424 ◽  
Author(s):  
W. Preetz ◽  
P. Hollmann ◽  
G. Thiele ◽  
H. Hillebrecht

The triply bonded octahalogenodiosmate(III) anions [Os2X8]2-, previously known with X = Cl, Br, have now been extended to include the iodide with two staggered OsI4 units. This compound was prepared by treating [Os2Cl8]2- with Nal at room temperature in acetone solution. The structure determination by X-ray diffractometry on single crystals of (PPN)2[Os2I8] · 2 CH2Cl2, reveals crystallization in the monoclinic system, space group P21/c with Z = 4. The Os-Os triple bond is with 2.212(1) Å the longest within the three octahalogenodiosmates(III). The Raman spectra show ν(OsOs) at 285, [Os2Cl8]2-; at 287, [Os2Br8]2- and for the iodo compound at 270.1 cm-1 with up to three overtones. The spectroscopic constants are calculated to be ω1 = 270.9 cm-1; X11 = -0.50 cm-1. The 10 Κ UV-VIS spectra of solid [(n-C4H9)4N]2[Os2X8] exhibit δ-π* transitions with maxima at 723, 690 and 643 nm, superimposed by vibrational fine structures with long progressions of 195, 211 and 183 cm-1 for X = Cl, Br, I, respectively. Oxidation of [Os2X8]2-, X = Cl, Br with the corresponding halogen leads to the cleavage of the Os-Os bond, and the dekahalogenodiosmates(IV), [Os2X10]2-, are formed


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


2016 ◽  
Vol 71 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Oscar E. Piro ◽  
Gustavo A. Echeverría ◽  
Beatriz S. Parajón-Costa ◽  
Enrique J. Baran

AbstractMagnesium acesulfamate, Mg(C4H4NO4S)2·6H2O, was prepared by the reaction of acesulfamic acid and magnesium carbonate in aqueous solution, and characterized by elemental analysis. Its crystal structure was determined by single crystal X-ray diffraction methods. The substance crystallizes in the triclinic space group P1̅ with one molecule per unit cell. The FTIR spectrum of the compound was also recorded and is briefly discussed. Some comparisons with other simple acesulfamate and saccharinate salts are also made.


2010 ◽  
Vol 982 (1-3) ◽  
pp. 176-180 ◽  
Author(s):  
Mohammad Yazdanbakhsh ◽  
Haman Tavakkoli ◽  
Maryam Taherzadeh ◽  
Roland Boese

2017 ◽  
Vol 81 (6) ◽  
pp. 1431-1437 ◽  
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Marco E. Ciriotti

AbstractMagnesio-riebeckite from the dumps of the abandoned mine of Varenche (45°47’22’’ N, 7°29’17’’ E), Saint-Barthélemy, Nus, Aosta Valley (Italy), was studied to provide the complete mineral description (including crystal structure) and insights into the crystal-chemistry of riebeckite. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is A(Na0.09K0.01)Σ=0.10B(Na1.77Ca0.11Mg0.08Mn2+ 0:04)Σ=2.00C(Mg2.93Mn2+0:13Fe2+0:07Zn0.01Ni0.12Fe3+1:25Al0.48Ti0.01)Σ=5.00T(Si7.92Al0.08)Σ=8.00 O22W(OH1.88F0.12)Σ=2.00. Magnesio-riebeckite is biaxial (+), with α = 1.678(2), β = 1.682(2), γ = 1.688(2) and 2V (meas.) = 80.2(1.7)°, 2V (calc.) = 78.7°. The unit-cell parameters are a = 9.6481(14), b = 17.873(3), c = 5.3013(7) Å, β = 103.630(2)°, V = 888.4 (2)Å3, Z = 2, space group C2/m. The strongest ten reflections in the powder X-ray pattern [d values (in Å), I, (hkl)] are: 2.701, 100, (151); 8.303, 83, (110); 3.079, 62, (310); 3.391, 53, (131); 4.467, 50, (040,021); 2.522, 50, (̅202); 2.578, 35, (061); 2.155, 30, (261), 4.855, 30, (̅111), 2.300, 29, (̅351).


Sign in / Sign up

Export Citation Format

Share Document