A maximum principle for general backward stochastic differential equation

2016 ◽  
Vol 29 (6) ◽  
pp. 1505-1518 ◽  
Author(s):  
Shuang Wu ◽  
Lan Shu
2014 ◽  
Vol 15 (01) ◽  
pp. 1550002 ◽  
Author(s):  
Li-Shun Xiao ◽  
Sheng-Jun Fan ◽  
Na Xu

In this paper, we are interested in solving general time interval multidimensional backward stochastic differential equation in Lp (p ≥ 1). We first study the existence and uniqueness for Lp (p > 1) solutions by the method of convolution and weak convergence when the generator is monotonic in y and Lipschitz continuous in z both non-uniformly with respect to t. Then we obtain the existence and uniqueness for L1 solutions with an additional assumption that the generator has a sublinear growth in z non-uniformly with respect to t.


2020 ◽  
Vol 9 (2) ◽  
pp. 459-470
Author(s):  
Helin Wu ◽  
Yong Ren ◽  
Feng Hu

Abstract In this paper, we investigate some kind of Dynkin game under g-expectation induced by backward stochastic differential equation (short for BSDE). The lower and upper value functions $$\underline{V}_t=ess\sup \nolimits _{\tau \in {\mathcal {T}_t}} ess\inf \nolimits _{\sigma \in {\mathcal {T}_t}}\mathcal {E}^g_t[R(\tau ,\sigma )]$$ V ̲ t = e s s sup τ ∈ T t e s s inf σ ∈ T t E t g [ R ( τ , σ ) ] and $$\overline{V}_t=ess\inf \nolimits _{\sigma \in {\mathcal {T}_t}} ess\sup \nolimits _{\tau \in {\mathcal {T}_t}}\mathcal {E}^g_t[R(\tau ,\sigma )]$$ V ¯ t = e s s inf σ ∈ T t e s s sup τ ∈ T t E t g [ R ( τ , σ ) ] are defined, respectively. Under some suitable assumptions, a pair of saddle points is obtained and the value function of Dynkin game $$V(t)=\underline{V}_t=\overline{V}_t$$ V ( t ) = V ̲ t = V ¯ t follows. Furthermore, we also consider the constrained case of Dynkin game.


2020 ◽  
Vol 28 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Mohamed El Jamali ◽  
Mohamed El Otmani

AbstractIn this paper, we study the solution of a backward stochastic differential equation driven by a Lévy process with one rcll reflecting barrier. We show the existence and uniqueness of a solution by means of the penalization method when the coefficient is stochastic Lipschitz. As an application, we give a fair price of an American option.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1153
Author(s):  
Na Zhang ◽  
Guangyan Jia

In this paper, we introduce the Lie-point symmetry method into backward stochastic differential equation and forward–backward stochastic differential equations, and get the corresponding deterministic equations.


2020 ◽  
Vol 28 (1) ◽  
pp. 1-18
Author(s):  
Dahbia Hafayed ◽  
Adel Chala

AbstractIn this paper, we are concerned with an optimal control problem where the system is driven by a backward doubly stochastic differential equation with risk-sensitive performance functional. We generalized the result of Chala [A. Chala, Pontryagin’s risk-sensitive stochastic maximum principle for backward stochastic differential equations with application, Bull. Braz. Math. Soc. (N. S.) 48 2017, 3, 399–411] to a backward doubly stochastic differential equation by using the same contribution of Djehiche, Tembine and Tempone in [B. Djehiche, H. Tembine and R. Tempone, A stochastic maximum principle for risk-sensitive mean-field type control, IEEE Trans. Automat. Control 60 2015, 10, 2640–2649]. We use the risk-neutral model for which an optimal solution exists as a preliminary step. This is an extension of an initial control system in this type of problem, where an admissible controls set is convex. We establish necessary as well as sufficient optimality conditions for the risk-sensitive performance functional control problem. We illustrate the paper by giving two different examples for a linear quadratic system, and a numerical application as second example.


Sign in / Sign up

Export Citation Format

Share Document