Statistical distribution of nonlinear random wave height

2006 ◽  
Vol 49 (4) ◽  
pp. 443-448 ◽  
Author(s):  
Yijun Hou ◽  
Peifang Guo ◽  
Guiting Song ◽  
Jinbao Song ◽  
Baoshu Yin ◽  
...  
2009 ◽  
Vol 53 (2) ◽  
pp. 267-273 ◽  
Author(s):  
YiJun Hou ◽  
YongLiang Duan ◽  
GengXin Chen ◽  
Peng Qi ◽  
GuiTing Song ◽  
...  

2018 ◽  
Vol 203 ◽  
pp. 01021
Author(s):  
Nurul 'Azizah Mukhlas ◽  
Noor Irza Mohd Zaki ◽  
Mohd Khairi Abu Husain ◽  
Gholamhossein Najafian

For offshore structural design, the load due to wind-generated random waves is usually the most important source of loading. While these structures can be designed by exposing them to extreme regular waves (100-year design wave), it is much more satisfactory to use a probabilistic approach to account for the inherent randomness of the wave loading. This method allows the statistical properties of the loads and structural responses to be determined, which is essential for the risk-based assessment of these structures. It has been recognized that the simplest wave generation is by using linear random wave theory. However, there is some limitation on its application as some of the nonlinearities cannot be explained when higher order terms are excluded and lead to underestimating of 100-year wave height. In this paper, the contribution of nonlinearities based on the second order wave theory was considered and being tested at a variety of sea state condition from low, moderate to high. Hence, it was proven that the contribution of nonlinearities gives significant impact the prediction of 100-year wave's design as it provides a higher prediction compared to linear wave theory.


2020 ◽  
Vol 8 (8) ◽  
pp. 589
Author(s):  
Mohamad Alkhalidi ◽  
Noor Alanjari ◽  
S. Neelamani

The interaction between waves and slotted vertical walls was experimentally studied in this research to examine the performance of the structure in terms of wave transmission, reflection, and energy dissipation. Single and twin slotted barriers of different slopes and porosities were tested under random wave conditions. A parametric analysis was performed to understand the effect of wall porosity and slope, the number of walls, and the incoming relative wave height and period on the structure performance. The main focus of the study was on wave transmission, which is the main parameter required for coastal engineering applications. The results show that reducing wall porosity from 30% to 10% decreases the wave transmission by a maximum of 35.38% and 38.86% for single and twin walls, respectively, increases the wave reflection up to 47.6%, and increases the energy dissipation by up to 23.7% on average for single walls. For twin-walls, the reduction in wall porosity decreases the wave transmission up to 26.3%, increases the wave reflection up to 40.5%, and the energy dissipation by 13.3%. The addition of a second wall is more efficient in reducing the transmission coefficient than the other wall parameters. The reflection and the energy dissipation coefficients are more affected by the wall porosity than the wall slope or the existence of a second wall. The results show that as the relative wave height increases from 0.1284 to 0.2593, the transmission coefficient decreases by 21.2%, the reflection coefficient decreases by 15.5%, and the energy dissipation coefficient increases by 18.4% on average. Both the transmission and the reflection coefficients increase as the relative wave length increases while the energy dissipation coefficient decreases. The variation in the three coefficients is more significant in deep water than in shallower water.


1980 ◽  
Vol 1 (17) ◽  
pp. 175 ◽  
Author(s):  
Akira Kimura

This study deals with the statistical properties of the group formation of random waves determined by the zero-up-cross method. Probability distributions about (1) the run of high waves (2) the total run (3) the run of resonant wave period are derived theoretically providing that the time series of wave height and wave period form the Markov chain. Transition probabilities are given by the 2-dimensional Rayleigh distribution for the wave height train and the 2-dimensional Weibull distribution for the wave period train. And very good agreements between data and the theoretical distributions have been obtained. Then the paper discusses those parameters which affect the statistical properties of the runs and shows that the spectrum peakedness parameter for the. run of wave height and the spectrum width parameter for the run of wave period are the most predominant.


2008 ◽  
Vol 20 (3) ◽  
pp. 036604 ◽  
Author(s):  
Alessandra Romolo ◽  
Felice Arena

Author(s):  
Felice Arena ◽  
C. Guedes Soares

The peak to trough distributions of nonlinear high sea waves in bimodal sea states in deep water are investigated. The statistical distribution of wave height is first analyzed by considering the Boccotti’s expression, where the parameters of the distribution are calculated for some bimodal spectra of sea states recorded in the Atlantic Ocean. The nonlinear crest and trough distributions are then obtained, particularizing for two peaked spectra the second-order Fedele and Arena expression, which depends on two parameters. The results have been finally validated by means of Monte Carlo simulations of second-order random waves with bimodal spectra.


1994 ◽  
Vol 35 (4) ◽  
pp. 1634-1643 ◽  
Author(s):  
Maged Elshamy

1986 ◽  
Vol 1 (20) ◽  
pp. 68 ◽  
Author(s):  
Hans Peter Riedel ◽  
Anthony Paul Byrne

According to wave theories the depth limited wave height over a horizontal seabed has a wave height to water depth ratio (H/d) of about 0.8. Flume experiments with monochromatic waves over a horizontal seabed have failed to produce H/d ratios greater than 0.55. However designers still tend to use H/d 0.8 for their design waves. Experiments have been carried out using random wave trains in the flume over a horizontal seabed. These experiments have shown that the limiting H/d ratio of 0.55 applies equally well to random waves.


Author(s):  
Dag Myrhaug ◽  
Carl Trygve Stansberg ◽  
Hanne Therese Wist

Statistics of the nonlinear free surface elevation as well as the nonlinear random wave kinematics in terms of the horizontal velocity component in arbitrary water depth are addressed. Two different methods are considered: a simplified analytical approach based on second-order Stokes wave theory including the sum-frequency effect only, and a second-order random wave model including both sum-frequency and difference-frequency effects. The paper compares results for the statistics of the nonlinear free surface, and the consequences of neglecting the difference-frequency effect in the first method are discussed.


Sign in / Sign up

Export Citation Format

Share Document