scholarly journals STATISTICAL PROPERTIES OF RANDOM WAVE GROUPS

1980 ◽  
Vol 1 (17) ◽  
pp. 175 ◽  
Author(s):  
Akira Kimura

This study deals with the statistical properties of the group formation of random waves determined by the zero-up-cross method. Probability distributions about (1) the run of high waves (2) the total run (3) the run of resonant wave period are derived theoretically providing that the time series of wave height and wave period form the Markov chain. Transition probabilities are given by the 2-dimensional Rayleigh distribution for the wave height train and the 2-dimensional Weibull distribution for the wave period train. And very good agreements between data and the theoretical distributions have been obtained. Then the paper discusses those parameters which affect the statistical properties of the runs and shows that the spectrum peakedness parameter for the. run of wave height and the spectrum width parameter for the run of wave period are the most predominant.

1988 ◽  
Vol 1 (21) ◽  
pp. 48 ◽  
Author(s):  
Akira Kimura

The probability distribution of the maximum run of irregular wave height is introduced theoretically. Probability distributions for the 2nd maximum, 3rd maximum and further maximum runs are also introduced. Their statistical properties, including the means and their confidence regions, are applied to the verification of experiments with irregular waves in the realization of a "severe sea state" in the test.


1986 ◽  
Vol 1 (20) ◽  
pp. 68 ◽  
Author(s):  
Hans Peter Riedel ◽  
Anthony Paul Byrne

According to wave theories the depth limited wave height over a horizontal seabed has a wave height to water depth ratio (H/d) of about 0.8. Flume experiments with monochromatic waves over a horizontal seabed have failed to produce H/d ratios greater than 0.55. However designers still tend to use H/d 0.8 for their design waves. Experiments have been carried out using random wave trains in the flume over a horizontal seabed. These experiments have shown that the limiting H/d ratio of 0.55 applies equally well to random waves.


Author(s):  
Olga Kuznetsova ◽  
Olga Kuznetsova ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinsky ◽  
...  

Based on numerical modelling evolution of beach under waves with height 1,0-1,5 m and period 7,5 and 10,6 sec as well as spectral wave parameters varying cross-shore analysed. The beach reformation of coastal zone relief is spatially uneven. It is established that upper part of underwater beach profile become terraced and width of the terrace is in direct pro-portion to wave height and period on the seaward boundary but inversely to angle of wave energy spreading. In addition it was ascertain that the greatest transfiguration of profile was accompanied by existence of bound infragravity waves, smaller part of its energy and shorter mean wave period as well as more significant roller energy.


2021 ◽  
Vol 9 (2) ◽  
pp. 114
Author(s):  
Dag Myrhaug ◽  
Muk Chen Ong

This article derives the time scale of pipeline scour caused by 2D (long-crested) and 3D (short-crested) nonlinear irregular waves and current for wave-dominant flow. The motivation is to provide a simple engineering tool suitable to use when assessing the time scale of equilibrium pipeline scour for these flow conditions. The method assumes the random wave process to be stationary and narrow banded adopting a distribution of the wave crest height representing 2D and 3D nonlinear irregular waves and a time scale formula for regular waves plus current. The presented results cover a range of random waves plus current flow conditions for which the method is valid. Results for typical field conditions are also presented. A possible application of the outcome of this study is that, e.g., consulting engineers can use it as part of assessing the on-bottom stability of seabed pipelines.


2021 ◽  
Vol 9 (3) ◽  
pp. 309
Author(s):  
James Allen ◽  
Gregorio Iglesias ◽  
Deborah Greaves ◽  
Jon Miles

The WaveCat is a moored Wave Energy Converter design which uses wave overtopping discharge into a variable v-shaped hull, to generate electricity through low head turbines. Physical model tests of WaveCat WEC were carried out to determine the device reflection, transmission, absorption and capture coefficients based on selected wave conditions. The model scale was 1:30, with hulls of 3 m in length, 0.4 m in height and a freeboard of 0.2 m. Wave gauges monitored the surface elevation at discrete points around the experimental area, and level sensors and flowmeters recorded the amount of water captured and released by the model. Random waves of significant wave height between 0.03 m and 0.12 m and peak wave periods of 0.91 s to 2.37 s at model scale were tested. The wedge angle of the device was set to 60°. A reflection analysis was carried out using a revised three probe method and spectral analysis of the surface elevation to determine the incident, reflected and transmitted energy. The results show that the reflection coefficient is highest (0.79) at low significant wave height and low peak wave period, the transmission coefficient is highest (0.98) at low significant wave height and high peak wave period, and absorption coefficient is highest (0.78) when significant wave height is high and peak wave period is low. The model also shows the highest Capture Width Ratio (0.015) at wavelengths on the order of model length. The results have particular implications for wave energy conversion prediction potential using this design of device.


Author(s):  
M. K. Abu Husain ◽  
N. I. Mohd Zaki ◽  
M. B. Johari ◽  
G. Najafian

For an offshore structure, wind, wave, current, tide, ice and gravitational forces are all important sources of loading which exhibit a high degree of statistical uncertainty. The capability to predict the probability distribution of the response extreme values during the service life of the structure is essential for safe and economical design of these structures. Many different techniques have been introduced for evaluation of statistical properties of response. In each case, sea-states are characterised by an appropriate water surface elevation spectrum, covering a wide range of frequencies. In reality, the most versatile and reliable technique for predicting the statistical properties of the response of an offshore structure to random wave loading is the time domain simulation technique. To this end, conventional time simulation (CTS) procedure or commonly called Monte Carlo time simulation method is the best known technique for predicting the short-term and long-term statistical properties of the response of an offshore structure to random wave loading due to its capability of accounting for various nonlinearities. However, this technique requires very long simulations in order to reduce the sampling variability to acceptable levels. In this paper, the effect of sampling variability of a Monte Carlo technique is investigated.


Sign in / Sign up

Export Citation Format

Share Document