Distribution optimization of circulating water in air-cooled heat exchangers for a typical indirect dry cooling system on the basis of entransy dissipation

2015 ◽  
Vol 58 (4) ◽  
pp. 617-629 ◽  
Author(s):  
Jian Sun ◽  
Kai Yuan ◽  
LiJun Yang ◽  
Lin Chen ◽  
XiaoZe Du ◽  
...  
2017 ◽  
Vol 125 ◽  
pp. 254-265 ◽  
Author(s):  
Huimin Wei ◽  
Xiaoze Du ◽  
Lijun Yang ◽  
Yongping Yang

Author(s):  
Masoud Darbandi ◽  
Ali Behrouzifar ◽  
Ahmad Mirhashemi ◽  
Hossein Salemkar ◽  
Gerry E. Schneider

Thermal powerplants report a reduction in their dry cooling tower performances due to surrounding wind drafts. Therefore, it is very important to consider the influence of wind velocity in cooling tower design; especially in geographical points with high wind conditions. In this regard, we use the computational fluid dynamics (CFD) tool and simulate a dry cooling tower in different wind velocities of 0, 5 and 10 m/s. To extend our calculations; we also consider the temperature variation of circulating water through the tower heat exchanger or deltas one-by-one. We show that some heat exchangers around the tower cannot reduce the circulating water temperature sufficiently. This causes an increase in the mean temperature of those heat exchangers. The worst performances can be attributed to heat exchanger located on side wind places. We will discuss the detail performance of each delta and their assembly in draft wind conditions. This study suggests some effective ways to overcome thermal-performance of cooling tower in wind conditions.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 574
Author(s):  
Ana Vafadar ◽  
Ferdinando Guzzomi ◽  
Kevin Hayward

Air heat exchangers (HXs) are applicable in many industrial sectors because they offer a simple, reliable, and cost-effective cooling system. Additive manufacturing (AM) systems have significant potential in the construction of high-efficiency, lightweight HXs; however, HXs still mainly rely on conventional manufacturing (CM) systems such as milling, and brazing. This is due to the fact that little is known regarding the effects of AM on the performance of AM fabricated HXs. In this research, three air HXs comprising of a single fin fabricated from stainless steel 316 L using AM and CM methods—i.e., the HXs were fabricated by both direct metal printing and milling. To evaluate the fabricated HXs, microstructure images of the HXs were investigated, and the surface roughness of the samples was measured. Furthermore, an experimental test rig was designed and manufactured to conduct the experimental studies, and the thermal performance was investigated using four characteristics: heat transfer coefficient, Nusselt number, thermal fluid dynamic performance, and friction factor. The results showed that the manufacturing method has a considerable effect on the HX thermal performance. Furthermore, the surface roughness and distribution, and quantity of internal voids, which might be created during and after the printing process, affect the performance of HXs.


Author(s):  
Rongliang Zhou ◽  
Juan Catano ◽  
Tiejun Zhang ◽  
John T. Wen ◽  
Greg J. Michna ◽  
...  

Steady-state modeling and analysis of a two-loop cooling system for high heat flux removal applications are studied. The system structure proposed consists of a primary pumped loop and a vapor compression cycle (VCC) as the secondary loop to which the pumped loop rejects heat. The pumped loop consists of evaporator, condenser, pump, and bladder liquid accumulator. The pumped loop evaporator has direct contact with the heat generating device and CHF must be higher than the imposed heat fluxes to prevent device burnout. The bladder liquid accumulator adjusts the pumped loop pressure level and, hence, the subcooling of the refrigerant to avoid pump cavitation and to achieve high critical heat flux (CHF) in the pumped loop evaporator. The vapor compression cycle of the two-loop cooling system consists of evaporator, liquid accumulator, compressor, condenser and electronic expansion valve. It is coupled with the pumped loop through a fluid-to-fluid heat exchanger that serves as both the vapor compression cycle evaporator and the pumped loop condenser. The liquid accumulator of the vapor compression cycle regulates the cycle active refrigerant charge and provides saturated vapor to the compressor at steady state. The heat exchangers are modeled with the mass, momentum, and energy balance equations. Due to the projected incorporation of microchannels in the pumped loop to enhance the heat transfer in heat sinks, the momentum equation, rarely seen in previous refrigeration system modeling efforts, is included to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Electronic expansion valve, compressor, pump, and liquid accumulators are modeled as static components due to their much faster dynamics compared with heat exchangers. The steady-state model can be used for static system design that includes determining the total refrigerant charge in the vapor compression cycle and the pumped loop to accommodate the varying heat load, sizing of various components, and parametric studies to optimize the operating conditions for a given heat load. The effect of pumped loop pressure level, heat exchangers geometries, pumped loop refrigerant selection, and placement of the pump (upstream or downstream of the evaporator) are studied. The two-loop cooling system structure shows both improved coefficient of performance (COP) and CHF overthe single loop vapor compression cycle investigated earlier by authors for high heat flux removal.


Author(s):  
Oyuna Angatkina ◽  
Andrew Alleyne

Two-phase cooling systems provide a viable technology for high–heat flux rejection in electronic systems. They provide high cooling capacity and uniform surface temperature. However, a major restriction of their application is the critical heat flux condition (CHF). This work presents model predictive control (MPC) design for CHF avoidance in two-phase pump driven cooling systems. The system under study includes multiple microchannel heat exchangers in series. The MPC controller performance is compared to the performance of a baseline PI controller. Simulation results show that while both controllers are able to maintain the two-phase cooling system below CHF, MPC has significant reduction in power consumption compared to the baseline controller.


Sign in / Sign up

Export Citation Format

Share Document