Distributed disturbance-observer-based vibration control for a flexible-link manipulator with output constraints

2018 ◽  
Vol 61 (10) ◽  
pp. 1528-1536 ◽  
Author(s):  
HongJun Yang ◽  
JinKun Liu ◽  
Wei He
Mechatronics ◽  
2005 ◽  
Vol 15 (7) ◽  
pp. 767-791 ◽  
Author(s):  
R. Caracciolo ◽  
D. Richiedei ◽  
A. Trevisani ◽  
V. Zanotto

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wei Zhao ◽  
Li Tang ◽  
Yan-Jun Liu

This article investigates an adaptive neural network (NN) control algorithm for marine surface vessels with time-varying output constraints and unknown external disturbances. The nonlinear state-dependent transformation (NSDT) is introduced to eliminate the feasibility conditions of virtual controller. Moreover, the barrier Lyapunov function (BLF) is used to achieve time-varying output constraints. As an important approximation tool, the NN is employed to approximate uncertain and continuous functions. Subsequently, the disturbance observer is structured to observe time-varying constraints and unknown external disturbances. The novel strategy can guarantee that all signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB). Finally, the simulation results verify the benefit of the proposed method.


2018 ◽  
Vol 148 ◽  
pp. 11005 ◽  
Author(s):  
Darren Williams ◽  
Hamed Haddad Khodoparast ◽  
Chenyuang Yang

Within robot systems the use of flexible links could solve many issues raised by their rigid counterparts. However, when these flexible links are integrated within systems which include moving parts their main issue lies in the vibrations experienced along their length due to disturbances. Much research effort has been made to solve this issue, with particular attention being paid to the application of piezoelectric patches as actuators within active vibration control (AVC). The study will consist of accurate models of a flexible link and two surface bonded piezoelectric patches, where the link and the piezoelectric patches will be modelled through the use of Euler-Bernoulli beam theory (EBT). The link will be subject to an initial displacement at its free end, and the resulting displacement of this end of the beam is to be controlled using a classic proportional-differential (PD) controller. The voltages to be applied across each of the actuators is to be controlled in accordance with the displacement of the free end of the beam, the actuators will then induce a strain upon the link opposing the movement of the tip. This research outlines this general method, obtains the best location of the piezoelectric patches and the control gains to be used, and proves that the method can be used to attenuate the vibrations experienced by a flexible link.


Author(s):  
Giovanni Boschetti ◽  
Dario Richiedei ◽  
Alberto Trevisani

This paper extends the use of delayed reference controllers to the simultaneous motion and vibration control of flexible link mechanisms. Vibration damping is achieved by introducing an “equivalent damping force” into the system through the computation of a suitable delayed time. The delayed time, which is based on the measured vibrations, is then employed in the trajectory planner to set the reference input. The stability of the controller is discussed and its effectiveness is proved by applying it to a four-bar planar linkage with flexible links.


2014 ◽  
Vol 2014.52 (0) ◽  
pp. _617-1_-_617-3_
Author(s):  
Barlas Raheel Khan ◽  
Shingo Okamoto ◽  
Jae Hoon Lee

Sign in / Sign up

Export Citation Format

Share Document