Optical emission enhancement of bent InSe thin films

2021 ◽  
Vol 64 (4) ◽  
Author(s):  
Jiahao Xie ◽  
Lijun Zhang
2017 ◽  
Vol 67 ◽  
pp. 139-144 ◽  
Author(s):  
Gaige Zheng ◽  
Xi Lu ◽  
Liming Qian ◽  
Fenglin Xian

1994 ◽  
Vol 33 (Part 2, No. 4A) ◽  
pp. L500-L502 ◽  
Author(s):  
Shigeru Niki ◽  
Yunosuke Makita ◽  
Akimasa Yamada ◽  
Akira Obara ◽  
Syunji Misawa ◽  
...  

1999 ◽  
Vol 569 ◽  
Author(s):  
L. Wang ◽  
I. Eisgruber ◽  
R. Hollingsworth ◽  
C. DeHart ◽  
T. Wangensteen ◽  
...  

ABSTRACTManufacturable, sputtered, device-quality, CdS thin films are reported for high efficiency solar cell applications. The sputtering plasma is monitored during deposition using optical emission spectroscopy. Optical emission spectroscopy (OES) is commonly used as an end point detector in plasma etching processes, where the disappearance of the etch product wavelength signature provides an unambiguous indication of completion. OES is only now beginning to be examined for controlling deposition processes, primarily because the dependence between OES signal and film properties can frequently be a quite complex function of the electron and gas densities, the emitting species concentration, the electron impact excitation cross section, the electron energy distribution function, and the probability of inelastic collisions between plasma species. OES monitoring during CdS sputtering allows accurate determination of deposition rate. Both Cd and S emission peaks can be identified, allowing tracking of the results of preferential sputtering. The OES output has been tied directly into the chamber controls, resulting in automatic closed-loop control of deposition rate. The resulting CdS films are device-quality and well-suited to large-scale manufacturing. A photovoltaic efficiency of 12.1 % was obtained from sputtered CdS on CIGS absorber, compared to 12.9% for the traditional, but less manufacturable, chemical bath deposited CdS on the same batch of CIGS. The sputtering technique has many advantages over other deposition techniques, such as easy scaleablity to large areas, simple process control, compatibility with in-line manufacturing of layered devices and low cost. RF, or lower-cost pulsed DC, sputtering power supplies can be used with comparable deposition rates. The structure, optical, and electrical properties of the sputtered CdS thin films have been characterized.


1978 ◽  
Vol 32 (3) ◽  
pp. 281-287 ◽  
Author(s):  
Arnold W. Hogrefe ◽  
Robert K. Lowry

dc arc optical emission spectroscopy was investigated as a quantitative method for measuring compositions of thin films commonly used in fabricating semiconductor devices. Thin films studied were nickel-chromium, phosphorus-silicon dioxide, and silicon-aluminum. Film samples were obtained by direct deposition onto ordinary graphite electrodes mounted in vacuum deposition chambers. Standards for each film were prepared by evaporating series of synthetic solutions approximating film compositions onto electrode tips, or by preparing appropriately weighed mixed powder standards. Calibration curves were established by burning multiple sets of these standard electrodes in a 15-A dc arc and plotting the intensity ratios for selected atomic lines of the analyte elements. Correlation of emission results with atomic absorption, electron microprobe, and gravimetric analysis showed absolute agreement to within ±3% for nickel-chromium, ± 0.3% for phosphorus-silicon dioxide, and ±0.2% for silicon-aluminum. Maximum relative percent error was 5, 10, and 12.5%, respectively. This technique has proved to be a rapid convenient process control tool in the manufacture of microelectronic devices.


2011 ◽  
Vol 50 (8R) ◽  
pp. 080207 ◽  
Author(s):  
Christopher T. Que ◽  
Tadataka Edamura ◽  
Makoto Nakajima ◽  
Masahiko Tani ◽  
Masanori Hangyo

2000 ◽  
Vol 183 (1-4) ◽  
pp. 109-121 ◽  
Author(s):  
J.A.E. Wasey ◽  
A. Safonov ◽  
I.D.W. Samuel ◽  
W.L. Barnes

2014 ◽  
Vol 32 ◽  
pp. 1460340
Author(s):  
J. W. M. Lim ◽  
C. S. Chan ◽  
L. Xu ◽  
S. Xu

The advent of the plasma revolution began in the 1970's with the exploitation of plasma sources for anisotropic etching and processing of materials. In recent years, plasma processing has gained popularity, with research institutions adopting projects in the field and industries implementing dry processing in their production lines. The advantages of utilizing plasma sources would be uniform processing over a large exposed surface area, and the reduction of toxic emissions. This leads to reduced costs borne by manufacturers which could be passed down as consumer savings, and a reduction in negative environmental impacts. Yet, one constraint that plagues the industry would be the control of contaminants in a plasma reactor which becomes evident when reactions are conducted in a clean vacuum environment. In this work, amorphous silicon (a-Si) thin films were grown on glass substrates in a low frequency inductively coupled plasma (LF-ICP) reactor with a top lid made of quartz. Even though the chamber was kept at high vacuum (~10−4 Pa), it was evident through secondary ion mass spectroscopy (SIMS) and Fourier-transform infra-red spectroscopy (FTIR) that oxygen contaminants were present. With the aid of optical emission spectroscopy (OES) the contaminant species were identified. The design of the LF-ICP reactor was then modified to incorporate an Alumina ( Al2O3 ) lid. Results indicate that there were reduced amounts of contaminants present in the reactor, and that an added benefit of increased power transfer to the plasma, improving deposition rate of thin films was realized. The results of this study is conclusive in showing that Al2O3 is a good alternative as a top-lid of an LF-ICP reactor, and offers industries a solution in improving quality and rate of growth of thin films.


Sign in / Sign up

Export Citation Format

Share Document