scholarly journals Experimental investigation of Reynolds stress complex eddy viscosity model for coherent structure dynamics

2011 ◽  
Vol 54 (7) ◽  
pp. 1319-1327 ◽  
Author(s):  
YongXia Jia ◽  
ZhanQi Tang ◽  
Nan Jiang
Author(s):  
Xudong Song ◽  
Zhen Zhang ◽  
Yiwei Wang ◽  
Shuran Ye ◽  
Chenguang Huang

Abstract The solution of the Reynolds-averaged Navier-Stokes (RANS) equation has been widely used in engineering problems. However, this model does not provide satisfactory prediction accuracy. Because the widely used eddy viscosity model assumes a linear relationship between the Reynolds stress and the average strain rate tensor and these linear models cannot capture the anisotropic characteristics of the actual flow. In this paper, two kinds of flow field structures of two-dimensional cylindrical flow and circular tube jet are calculated by using the RANS model. Secondly, in order to improve the prediction accuracy of the RANS model, the Reynolds stress of the RANS model is reconstructed by the tensor basis neural network algorithm based on nonlinear eddy viscosity model. Finally, the model trained by neural network is cross-validated, and compare the cross-test results with the traditional RANS k-eps model. The results show that the multi-layer neural network method has achieved good results in turbulence model reconstruction.


Author(s):  
Zinon Vlahostergios ◽  
Kyros Yakinthos

This paper presents an effort to model separation-induced transition on a flat plate with a semi-circular leading edge, by using two advanced turbulence models, the three equation non-linear model k-ε-A2 of Craft et al. [16] and the Reynolds-stress model of Craft [13]. The mechanism of the transition is governed by the different inlet velocity and turbulence intensity conditions, which lead to different recirculation bubbles and different transition onset points for each case. The use of advanced turbulence models in predicting the development of transitional flows has shown, in past studies, good perspectives. The k-ε-A2 model uses an additional transport equation for the A2 Reynolds stress invariant and it is an improvement of Craft et al. [12] non-linear eddy viscosity model. The use of the third transport equation gives improved results in the prediction of the longitudinal Reynolds stress distributions and especially, in flows where transitional phenomena may occur. Although this model is a pure eddy-viscosity model, it borrows many aspects from the more complex Reynolds-stress models. On the other hand, the use of an advanced Reynolds-stress turbulence model, such as the one of Craft [13], can predict many complex flows and there are indications that it can be applied to transitional flows also, since the crucial terms of Reynolds stress generation are computed exactly and normal stress anisotropy is resolved. The model of Craft [13], overcomes the drawbacks of the common used Reynolds-stress models regarding the computation of wall-normal distances and vectors in order to account for wall proximity effects. Instead of these quantities, it employs “normalized turbulence lengthscale gradients” which give the ability to identify the presence of strong inhomogeneity in a flow development, in an easier way. The final results of both turbulence models showed acceptable agreement with the experimental data. In this work it is shown that there is a good potential to model separation-induced transitional flows, with advanced turbulence modeling without any additional use of ad-hoc modifications or additional equations, based on various transition models.


2014 ◽  
Vol 26 (4) ◽  
pp. 041702 ◽  
Author(s):  
M. Germano ◽  
A. Abbà ◽  
R. Arina ◽  
L. Bonaventura

Author(s):  
Feng Wang ◽  
Mauro Carnevale ◽  
Luca di Mare ◽  
Simon Gallimore

Computational Fluid Dynamics (CFD) has been widely used for compressor design, yet the prediction of performance and stage matching for multi-stage, high-speed machines remain challenging. This paper presents the authors’ effort to improve the reliability of CFD in multistage compressor simulations. The endwall features (e.g. blade fillet and shape of the platform edge) are meshed with minimal approximations. Turbulence models with linear and non-linear eddy viscosity models are assessed. The non-linear eddy viscosity model predicts a higher production of turbulent kinetic energy in the passages, especially close to the endwall region. This results in a more accurate prediction of the choked mass flow and the shape of total pressure profiles close to the hub. The non-linear viscosity model generally shows an improvement on its linear counterparts based on the comparisons with the rig data. For geometrical details, truncated fillet leads to thicker boundary layer on the fillet and reduced mass flow and efficiency. Shroud cavities are found to be essential to predict the right blockage and the flow details close to the hub. At the part speed the computations without the shroud cavities fail to predict the major flow features in the passage and this leads to inaccurate predictions of massflow and shapes of the compressor characteristic. The paper demonstrates that an accurate representation of the endwall geometry and an effective turbulence model, together with a good quality and sufficiently refined grid result in a credible prediction of compressor matching and performance with steady state mixing planes.


Sign in / Sign up

Export Citation Format

Share Document