Coherent structures in wall turbulence and mechanism for drag reduction control

2013 ◽  
Vol 56 (6) ◽  
pp. 1053-1061 ◽  
Author(s):  
ChunXiao Xu ◽  
BingQing Deng ◽  
WeiXi Huang ◽  
GuiXiang Cui
2020 ◽  
Vol 5 (7) ◽  
Author(s):  
Daniel Fernex ◽  
Richard Semaan ◽  
Marian Albers ◽  
Pascal S. Meysonnat ◽  
Wolfgang Schröder ◽  
...  

2016 ◽  
Vol 805 ◽  
pp. 303-321 ◽  
Author(s):  
A. Stroh ◽  
Y. Hasegawa ◽  
P. Schlatter ◽  
B. Frohnapfel

A numerical investigation of two locally applied drag-reducing control schemes is carried out in the configuration of a spatially developing turbulent boundary layer (TBL). One control is designed to damp near-wall turbulence and the other induces constant mass flux in the wall-normal direction. Both control schemes yield similar local drag reduction rates within the control region. However, the flow development downstream of the control significantly differs: persistent drag reduction is found for the uniform blowing case, whereas drag increase is found for the turbulence damping case. In order to account for this difference, the formulation of a global drag reduction rate is suggested. It represents the reduction of the streamwise force exerted by the fluid on a plate of finite length. Furthermore, it is shown that the far-downstream development of the TBL after the control region can be described by a single quantity, namely a streamwise shift of the uncontrolled boundary layer, i.e. a changed virtual origin. Based on this result, a simple model is developed that allows the local drag reduction rate to be related to the global one without the need to conduct expensive simulations or measurements far downstream of the control region.


Author(s):  
Cristian Marchioli ◽  
Fabio Sbrizzai ◽  
Alfredo Soldati

Particle transfer in the wall region of turbulent boundary layers is dominated by the coherent structures which control the turbulence regeneration cycle. Coherent structures bring particles toward the wall and away from the wall and favour particle segregation in the viscous region giving rise to nonuniform particle distribution profiles which peak close to the wall. In this work, we focus on the transfer mechanism of different size particles and on the influence of gravity on particles deposition. By tracking O(105) particles in Direct Numerical Simulation (DNS) of a turbulent channel flow at Reτ = 150, we find that particles may reach the wall directly or may accumulate in the wall region, under the low-speed streaks. Even though low-speed streaks are ejection-like environments, particles are not re-entrained into the outer region. Particles segregated very near the wall by the trapping mechanisms we investigated in a previous work [1] are slowly driven to the wall. We find that gravity plays a role on particle distribution but, for small particles (τp+ < 3), the controlling transfer mechanism is related to near-wall turbulence structure.


2005 ◽  
Vol 17 (1) ◽  
pp. 011702-011702-4 ◽  
Author(s):  
Kaoru Iwamoto ◽  
Koji Fukagata ◽  
Nobuhide Kasagi ◽  
Yuji Suzuki

2007 ◽  
Vol 584 ◽  
pp. 281-299 ◽  
Author(s):  
KYOUNGYOUN KIM ◽  
CHANG-F. LI ◽  
R. SURESHKUMAR ◽  
S. BALACHANDAR ◽  
RONALD J. ADRIAN

The effects of polymer stresses on near-wall turbulent structures are examined by using direct numerical simulation of fully developed turbulent channel flows with and without polymer stress. The Reynolds number based on friction velocity and half-channel height is 395, and the stresses created by adding polymer are modelled by a finite extensible nonlinear elastic, dumbbell model. Both low- (18%) and high-drag reduction (61%) cases are investigated. Linear stochastic estimation is employed to compute the conditional averages of the near-wall eddies. The conditionally averaged flow fields for Reynolds-stress-maximizing Q2 events show that the near-wall vortical structures are weakened and elongated in the streamwise direction by polymer stresses in a manner similar to that found by Stone et al. (2004) for low-Reynolds-number quasi-streamwise vortices (‘exact coherent states: ECS’). The conditionally averaged fields for the events with large contribution to the polymer work are also examined. The vortical structures in drag-reduced turbulence are very similar to those for the Q2 events, i.e. counter-rotating streamwise vortices near the wall and hairpin vortices above the buffer layer. The three-dimensional distributions of conditionally averaged polymer force around these vortical structures show that the polymer force components oppose the vortical motion. More fundamentally, the torques due to polymer stress are shown to oppose the rotation of the vortices, thereby accounting for their weakening. The observations also extend concepts of the vortex retardation by viscoelastic counter-torques to the heads of hairpins above the buffer layer, and offer an explanation of the mechanism of drag reduction in the outer region of wall turbulence, as well as in the buffer layer.


Sign in / Sign up

Export Citation Format

Share Document