scholarly journals Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET

2013 ◽  
Vol 58 (20) ◽  
pp. 2497-2506 ◽  
Author(s):  
YuLei Qi ◽  
JinMing Ge ◽  
JianPing Huang
2018 ◽  
Vol 18 (2) ◽  
pp. 1337-1362 ◽  
Author(s):  
Emmanouil Proestakis ◽  
Vassilis Amiridis ◽  
Eleni Marinou ◽  
Aristeidis K. Georgoulias ◽  
Stavros Solomos ◽  
...  

Abstract. We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network). The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007–December 2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth) values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally, we decompose the CALIPSO AOD (aerosol optical depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.


2020 ◽  
Vol 20 (21) ◽  
pp. 12527-12547
Author(s):  
Yang Yang ◽  
Min Chen ◽  
Xiujuan Zhao ◽  
Dan Chen ◽  
Shuiyong Fan ◽  
...  

Abstract. To facilitate the future inclusion of aerosol–radiation interactions in the regional operational numerical weather prediction (NWP) system RMAPS-ST (adapted from Weather Research and Forecasting, WRF) at the Institute of Urban Meteorology (IUM), China Meteorological Administration (CMA), the impacts of aerosol–radiation interactions on the forecast of surface radiation and meteorological parameters during a heavy pollution event (6–10 December 2015) over northern China were investigated. The aerosol information was simulated by RMAPS-Chem (adapted from the WRF model coupled with Chemistry, WRF-Chem) and then offline-coupled into the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) radiation scheme of WRF to enable the aerosol–radiation feedback in the forecast. To ensure the accuracy of the high-frequency (hourly) updated aerosol optical depth (AOD) field, the temporal and spatial variations of simulated AOD and aerosol extinction coefficient at 550 nm were evaluated against in situ and satellite observations. Comparisons with in situ and Moderate Resolution Imaging Spectroradiometer (MODIS), AErosol Robotic NETwork (AERONET), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite observations showed that the model could reproduce the spatial and vertical distribution as well as the temporal variation of the polluted episode. Further comparison of PM2.5 with in situ observation showed WRF-Chem reasonably captured the PM2.5 field in terms of spatial distribution and magnitude, with the correlation coefficients of 0.85, 0.89, 0.76, 0.92 and 0.77 in Beijing, Shijiazhuang, Tianjin, Hebei and Henan, respectively. Forecasts with and without the aerosol information were conducted further, and the differences of surface radiation, energy budget and meteorological parameters were evaluated against surface and sounding observations. The offline-coupling simulation (with aerosol–radiation interaction active) showed a remarkable decrease in downward shortwave (SW) radiation reaching the surface, thus helping to reduce the overestimated SW radiation during the daytime. The simulated surface radiation budget was also improved, with the biases of net surface radiation decreased by 85.3 %, 50.0 %, 35.4 % and 44.1 % during the daytime in Beijing, Tianjin, Taiyuan and Jinan respectively, accompanied by the reduction of sensible (16.1 W m−2, 18.5 %) and latent (6.8 W m−2, 13.4 %) heat fluxes emitted by the surface around noon. In addition, the cooling of 2 m temperature (∼0.40 ∘C) and the decrease in horizontal wind speed near the surface (∼0.08 m s−1) caused by the aerosol–radiation interaction over northern China helped to reduce the bias by ∼73.9 % and ∼7.8 % respectively, particularly during the daytime. Further comparisons indicated that the simulation-implemented AOD could better capture the vertical structure of atmospheric wind. Accompanied with the lower planetary boundary layer and the increased atmospheric stability, both U and V wind at 850 hPa showed convergences which were unfavorable for pollutant dispersion. Since RMPAS-ST provides meteorological initial conditions for RMAPS-Chem, the changes of meteorology introduced by aerosol–radiation interaction would routinely impact the simulations of pollutants. To verify the statistical significance of the results, we further conducted the 24 h forecasts for a longer period lasting 27 d (13 January–8 February 2017), with no AOD field (NoAero) and WRF-Chem-simulated hourly AOD fields (Aero) included, as well as a constant AOD value of 0.12 (ClimAero). The 1-month results were statistically significant and indicated that the mean RMSE of 2 m temperature (wind speed at 10 m) in Aero and ClimAero relative to NoAero was reduced by 4.0 % (1.9 %) and 1.2 % (1.6 %). More detailed evaluations and analysis will be addressed in a future article. These results demonstrated the influence of aerosol–radiation interactions on the improvement of predictive accuracy and the potential prospects to offline coupling of near-real-time aerosol information in regional RMAPS-ST NWP in northern China.


2015 ◽  
Vol 8 (10) ◽  
pp. 10319-10360
Author(s):  
A. R. Naeger ◽  
P. Gupta ◽  
B. Zavodsky ◽  
K. M. McGrath

Abstract. The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America. However, we identify several areas across the domain of interest from Asia to North America where the new product can encounter significant uncertainties due to the inclusion of the geostationary AOD retrievals. The uncertainties associated with geostationary AOD retrievals are expected to be minimized after the successful launch of the next-generation advanced NOAA GOES-R and recently launched JMA Himawari satellites. Observations from these advanced satellites will ultimately provide an enhanced understanding of the spatial and temporal distribution of aerosols over the Pacific.


2012 ◽  
Vol 12 (4) ◽  
pp. 10461-10492 ◽  
Author(s):  
Y. Xue ◽  
H. Xu ◽  
L. Mei ◽  
J. Guang ◽  
J. Guo ◽  
...  

Abstract. Agricultural biomass burning (ABB) in Central and East China occurs every year from May to October and peaks in June. The biomass burning event in June 2007 was very strong. During the period from 26 May to 16 June 2007, ABB occurred mainly in Anhui, Henan, Jiangsu and Shandong provinces. A comprehensive set of aerosol optical depth (AOD) data, produced by a merger of AOD product data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectroradiometer (MIRS), is used to study the spatial and temporal distribution of agricultural biomass aerosols in Central and East China combining with ground observations from both AErosol RObotic NETwork (AERONET) and China Aerosol Remote Sensing NETwork (CARSNET) measurements. We compared merged AOD data with single-sensor single-algorithm AOD data (MODIS Dark Target AOD data, MODIS Deep Blue AOD data, SRAP-MODIS AOD data and MISR AOD data). In this comparison, we found merged AOD products can improve the quality of AOD products from single-sensor single-algorithm data sets by expanding the spatial coverage of the study area and keeping the statistical confidence in AOD parameters. There existed high correlation (0.8479) between the merged AOD data and AERONET measurements. Our merged AOD data make use of synergetic information conveyed in all of the available satellite data. The merged AOD data were used for the analysis of the biomass burning event from 26 May to 16 June 2007 together with meteorological data. The merged AOD products and the ground observations from China suggest that biomass burning in Central and East China has had great impact on AOD over China. Influenced by this ABB, the highest AOD value in Beijing on 12 June 2007 reached 5.71.


2016 ◽  
Vol 43 (1) ◽  
pp. 431-439 ◽  
Author(s):  
Jun Li ◽  
Run Liu ◽  
Shaw Chen Liu ◽  
Chein‐Jung Shiu ◽  
Jingli Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document