Spatiotemporal characteristics of TOMS-based dust aerosol optical depth in northern China during 1978–2005

2016 ◽  
Vol 10 (1) ◽  
pp. 41-53 ◽  
Author(s):  
Xiaoyu Ren ◽  
Yun Xie ◽  
Guoyu Ren
2018 ◽  
Vol 18 (2) ◽  
pp. 1337-1362 ◽  
Author(s):  
Emmanouil Proestakis ◽  
Vassilis Amiridis ◽  
Eleni Marinou ◽  
Aristeidis K. Georgoulias ◽  
Stavros Solomos ◽  
...  

Abstract. We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network). The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007–December 2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth) values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally, we decompose the CALIPSO AOD (aerosol optical depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.


2017 ◽  
Author(s):  
Emmanouil Proestakis ◽  
Vassilis Amiridis ◽  
Eleni Marinou ◽  
Aristeidis K. Georgoulias ◽  
Stavros Solomos ◽  
...  

Abstract. We present a 3-D climatology of the desert dust distribution over South-East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network), the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, on multiyear CALIPSO observations (01/2007–12/2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over SE (South-East) Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (Dust Aerosol Optical Depth) values, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with highest values observed during spring for northern China (Taklimakan/Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally we decompose the CALIPSO AOD (Aerosol Optical Depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of SE Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between 01/2007 and 12/2015 are calculated over SE Asia and over selected sub-regions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua/MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.


2018 ◽  
Author(s):  
Sung-Kyun Shin ◽  
Matthias Tesche ◽  
Detlef Müller ◽  
Youngmin Noh

Abstract. Absorption aerosol optical depth (AAOD) as obtained from sun/sky photometer measurements provides a measure of the light-absorbing properties of the columnar aerosol loading. However, it is not an unambiguous, aerosol-type specific parameter, particularly if several types of absorbing aerosols, for instance black carbon (BC) and mineral dust, are present in a mixed aerosol plume. The contribution of mineral dust to total aerosol light-absorption is particularly important at UV wavelengths. In this study we refine a lidar-based technique for the separation of dust and non-dust aerosol types for the use with Aerosol Robotic Network (AERONET) direct sun and inversion products. We extend the methodology to retrieve AAOD related to non-dust aerosol (AAODnd) and BC (AAODBC). We test the method at selected AERONET sites that are frequently affected by aerosol plumes that contain a mixture of Saharan or Asian mineral dust and biomass-burning smoke or anthropogenic pollution, respectively. We find that aerosol optical depth (AOD) related to mineral dust as obtained with our methodology is frequently smaller than coarse-mode AOD. This suggests that the latter is not an ideal proxy for estimating the contribution of mineral dust to mixed dust plumes. We present the results of the AAODBC retrieval for the selected AERONET sites and compare them to coincident values provided in the Copernicus Atmospheric Monitoring System aerosol re-analysis. We find that modelled and AERONET AAODBC are most consistent for Asian sites or at Saharan sites with strong local anthropogenic sources.


2016 ◽  
Vol 8 (9) ◽  
pp. 702 ◽  
Author(s):  
Aojie Di ◽  
Yong Xue ◽  
Xihua Yang ◽  
John Leys ◽  
Jie Guang ◽  
...  

2002 ◽  
Vol 61 (1) ◽  
pp. 1-14 ◽  
Author(s):  
G.P Gobbi ◽  
F Barnaba ◽  
M Blumthaler ◽  
G Labow ◽  
J.R Herman

2018 ◽  
Vol 206 ◽  
pp. 15-32 ◽  
Author(s):  
V. Capelle ◽  
A. Chédin ◽  
M. Pondrom ◽  
C. Crevoisier ◽  
R. Armante ◽  
...  

2020 ◽  
Vol 20 (21) ◽  
pp. 12527-12547
Author(s):  
Yang Yang ◽  
Min Chen ◽  
Xiujuan Zhao ◽  
Dan Chen ◽  
Shuiyong Fan ◽  
...  

Abstract. To facilitate the future inclusion of aerosol–radiation interactions in the regional operational numerical weather prediction (NWP) system RMAPS-ST (adapted from Weather Research and Forecasting, WRF) at the Institute of Urban Meteorology (IUM), China Meteorological Administration (CMA), the impacts of aerosol–radiation interactions on the forecast of surface radiation and meteorological parameters during a heavy pollution event (6–10 December 2015) over northern China were investigated. The aerosol information was simulated by RMAPS-Chem (adapted from the WRF model coupled with Chemistry, WRF-Chem) and then offline-coupled into the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) radiation scheme of WRF to enable the aerosol–radiation feedback in the forecast. To ensure the accuracy of the high-frequency (hourly) updated aerosol optical depth (AOD) field, the temporal and spatial variations of simulated AOD and aerosol extinction coefficient at 550 nm were evaluated against in situ and satellite observations. Comparisons with in situ and Moderate Resolution Imaging Spectroradiometer (MODIS), AErosol Robotic NETwork (AERONET), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite observations showed that the model could reproduce the spatial and vertical distribution as well as the temporal variation of the polluted episode. Further comparison of PM2.5 with in situ observation showed WRF-Chem reasonably captured the PM2.5 field in terms of spatial distribution and magnitude, with the correlation coefficients of 0.85, 0.89, 0.76, 0.92 and 0.77 in Beijing, Shijiazhuang, Tianjin, Hebei and Henan, respectively. Forecasts with and without the aerosol information were conducted further, and the differences of surface radiation, energy budget and meteorological parameters were evaluated against surface and sounding observations. The offline-coupling simulation (with aerosol–radiation interaction active) showed a remarkable decrease in downward shortwave (SW) radiation reaching the surface, thus helping to reduce the overestimated SW radiation during the daytime. The simulated surface radiation budget was also improved, with the biases of net surface radiation decreased by 85.3 %, 50.0 %, 35.4 % and 44.1 % during the daytime in Beijing, Tianjin, Taiyuan and Jinan respectively, accompanied by the reduction of sensible (16.1 W m−2, 18.5 %) and latent (6.8 W m−2, 13.4 %) heat fluxes emitted by the surface around noon. In addition, the cooling of 2 m temperature (∼0.40 ∘C) and the decrease in horizontal wind speed near the surface (∼0.08 m s−1) caused by the aerosol–radiation interaction over northern China helped to reduce the bias by ∼73.9 % and ∼7.8 % respectively, particularly during the daytime. Further comparisons indicated that the simulation-implemented AOD could better capture the vertical structure of atmospheric wind. Accompanied with the lower planetary boundary layer and the increased atmospheric stability, both U and V wind at 850 hPa showed convergences which were unfavorable for pollutant dispersion. Since RMPAS-ST provides meteorological initial conditions for RMAPS-Chem, the changes of meteorology introduced by aerosol–radiation interaction would routinely impact the simulations of pollutants. To verify the statistical significance of the results, we further conducted the 24 h forecasts for a longer period lasting 27 d (13 January–8 February 2017), with no AOD field (NoAero) and WRF-Chem-simulated hourly AOD fields (Aero) included, as well as a constant AOD value of 0.12 (ClimAero). The 1-month results were statistically significant and indicated that the mean RMSE of 2 m temperature (wind speed at 10 m) in Aero and ClimAero relative to NoAero was reduced by 4.0 % (1.9 %) and 1.2 % (1.6 %). More detailed evaluations and analysis will be addressed in a future article. These results demonstrated the influence of aerosol–radiation interactions on the improvement of predictive accuracy and the potential prospects to offline coupling of near-real-time aerosol information in regional RMAPS-ST NWP in northern China.


2016 ◽  
Author(s):  
A. Fernando Almansa ◽  
Emilio Cuevas ◽  
Benjamín Torres ◽  
África Barreto ◽  
Rosa D. García ◽  
...  

Abstract. A new zenith looking narrow-band radiometer based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring, is presented in this paper. The ZEN system comprises a new radiometer (ZEN-R41) and a methodology for AOD retrieval (ZEN-LUT). ZEN-R41 has been designed to be stand-alone and without moving parts, making ZEN-R41 a low-cost and robust instrument with low maintenance, appropriated to be deployed in remote and unpopulated desert areas. The ZEN-LUT method is based on the comparison of the measured Zenith Sky Radiance (ZSR) with a lookup table (LUT) of computed ZSRs. The LUT is generated with the LibRadtran radiative transfer code. The sensitivity study proved that the ZEN-LUT method is appropriated to infer AOD from ZSR measurements. The validation of the ZEN-LUT technique was performed using data from AErosol RObotic NETwork (AERONET) Cimel Electronique 318 photometers (CE318). A comparison between AOD obtained by applying the ZEN-LUT method on ZSRs (inferred from CE318 diffuse sky measurements) and AOD provided by AERONET (derived from CE318 direct sun measurements) was carried out at three sites characterized by a regular presence of desert mineral dust aerosols: Izaña and Santa Cruz in the Canary Islands, and Tamanrasset in Algeria. The results show a R2 ranging from 0.99 at Santa Cruz to 0.95 at Tamanrasset, and a maximum root mean square error (RMSE) ranging from 0.010 at Izaña to 0.035 at Tamanrasset. The comparison of ZSR values from ZEN-R41 and the CE318 showed absolute relative mean bias (RMB)


Sign in / Sign up

Export Citation Format

Share Document