scholarly journals Merging aerosol optical depth data from multiple satellite missions to view agricultural biomass burning in Central and East China

2012 ◽  
Vol 12 (4) ◽  
pp. 10461-10492 ◽  
Author(s):  
Y. Xue ◽  
H. Xu ◽  
L. Mei ◽  
J. Guang ◽  
J. Guo ◽  
...  

Abstract. Agricultural biomass burning (ABB) in Central and East China occurs every year from May to October and peaks in June. The biomass burning event in June 2007 was very strong. During the period from 26 May to 16 June 2007, ABB occurred mainly in Anhui, Henan, Jiangsu and Shandong provinces. A comprehensive set of aerosol optical depth (AOD) data, produced by a merger of AOD product data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectroradiometer (MIRS), is used to study the spatial and temporal distribution of agricultural biomass aerosols in Central and East China combining with ground observations from both AErosol RObotic NETwork (AERONET) and China Aerosol Remote Sensing NETwork (CARSNET) measurements. We compared merged AOD data with single-sensor single-algorithm AOD data (MODIS Dark Target AOD data, MODIS Deep Blue AOD data, SRAP-MODIS AOD data and MISR AOD data). In this comparison, we found merged AOD products can improve the quality of AOD products from single-sensor single-algorithm data sets by expanding the spatial coverage of the study area and keeping the statistical confidence in AOD parameters. There existed high correlation (0.8479) between the merged AOD data and AERONET measurements. Our merged AOD data make use of synergetic information conveyed in all of the available satellite data. The merged AOD data were used for the analysis of the biomass burning event from 26 May to 16 June 2007 together with meteorological data. The merged AOD products and the ground observations from China suggest that biomass burning in Central and East China has had great impact on AOD over China. Influenced by this ABB, the highest AOD value in Beijing on 12 June 2007 reached 5.71.

2014 ◽  
Vol 14 (23) ◽  
pp. 32177-32231 ◽  
Author(s):  
V. Buchard ◽  
A. M. da Silva ◽  
P. R. Colarco ◽  
A. Darmenov ◽  
C. A. Randles ◽  
...  

Abstract. A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.


2014 ◽  
Vol 6 (1) ◽  
Author(s):  
Sanja Grgurić ◽  
Josip Križan ◽  
Goran Gašparac ◽  
Oleg Antonić ◽  
Zdravko Špirić ◽  
...  

AbstractThis study analyzes the relationship between Aerosol Optical Depth (AOD) obtained from Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and ground-based PM10 mass concentration distribution over a period of 5 years (2008–2012), and investigates the applicability of satellite AOD data for ground PM10 mapping for the Croatian territory. Many studies have shown that satellite AOD data are correlated to ground-based PM mass concentration. However, the relationship between AOD and PM is not explicit and there are unknowns that cause uncertainties in this relationship.The relationship between MODIS AOD and ground-based PM10 has been studied on the basis of a large data set where daily averaged PM10 data from the 12 air quality stations across Croatia over the 5 year period are correlated with AODs retrieved from MODIS Terra and Aqua. A database was developed to associate coincident MODIS AOD (independent) and PM10 data (dependent variable). Additional tested independent variables (predictors, estimators) included season, cloud fraction, and meteorological parameters — including temperature, air pressure, relative humidity, wind speed, wind direction, as well as planetary boundary layer height — using meteorological data from WRF (Weather Research and Forecast) model.It has been found that 1) a univariate linear regression model fails at explaining the data variability well which suggests nonlinearity of the AOD-PM10 relationship, and 2) explanation of data variability can be improved with multivariate linear modeling and a neural network approach, using additional independent variables.


2015 ◽  
Vol 15 (10) ◽  
pp. 5743-5760 ◽  
Author(s):  
V. Buchard ◽  
A. M. da Silva ◽  
P. R. Colarco ◽  
A. Darmenov ◽  
C. A. Randles ◽  
...  

Abstract. A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10542
Author(s):  
Jinglong Li ◽  
Xiangyu Ge ◽  
Qing He ◽  
Alim Abbas

Aerosol optical depth (AOD) is a key parameter that reflects aerosol characteristics. However, research on the AOD of dust aerosols and various environmental variables is scarce. Therefore, we conducted in-depth studies on the distributions and variations of AOD in the Taklimakan Desert and its margins, China. We examined the correlation characteristics between AOD and meteorological factors combined with satellite remote sensing detection methods using MCD19A2-MODIS AOD products (from 2000, 2005, 2010, and 2015), MOD13Q1-MODIS normalized difference vegetation index products, and meteorological data. We analyzed the temporal and spatial distributions of AOD, periodic change trends, and important impacts of meteorological factors on AOD in the Taklimakan Desert and its margins. To explore the relationships between desert aerosols and meteorological factors, a random forest model was used along with environmental variables to predict AOD and rank factor contributions. Results indicated that the monthly average AOD exhibited a clear unimodal curve that reached its maximum in April. The AOD values followed the order spring (0.28) > summer (0.27) > autumn (0.18) > winter (0.17). This seasonality is clear and can be related to the frequent sandstorms occurring in spring and early summer. Interannual AOD showed a gradually increasing trend to 2010 then large changes to 2015. AOD tends to increase from south to north. Based on the general trend, the maximum value of AOD is more dispersed and its low-value area is always stable. The climatic index that has the most significant effect on AOD is relative humidity.


2013 ◽  
Vol 13 (6) ◽  
pp. 3517-3526 ◽  
Author(s):  
X. Q. Yap ◽  
M. Hashim

Abstract. Investigating the human health effects of atmospheric particulate matter (PM) using satellite data are gaining more attention due to their wide spatial coverage and temporal advantages. Such epidemiological studies are, however, susceptible to bias errors and resulted in poor predictive output in some locations. Current methods calibrate aerosol optical depth (AOD) retrieved from MODIS to further predict PM. The recent satellite-based AOD calibration uses a mixed effects model to predict location-specific PM on a daily basis. The shortcomings of this daily AOD calibration are for areas of high probability of persistent cloud cover throughout the year such as in the humid tropical region along the equatorial belt. Contaminated pixels due to clouds causes radiometric errors in the MODIS AOD, thus causes poor predictive power on air quality. In contrary, a periodic assessment is more practical and robust especially in minimizing these cloud-related contaminations. In this paper, a simple yet robust calibration approach based on monthly AOD period is presented. We adopted the statistical fitting method with the adjustment technique to improve the predictive power of MODIS AOD. The adjustment was made based on the long-term observation (2001–2006) of PM10-AOD residual error characteristic. Furthermore, we also incorporated the ground PM measurement into the model as a weighting to reduce the bias of the MODIS-derived AOD value. Results indicated that this robust approach with monthly AOD calibration reported an improved average accuracy of PM10 retrieval from MODIS data by 50% compared to widely used calibration methods based on linear regression models, in addition to enabling further spatial patterns of periodic PM exposure to be undertaken.


2020 ◽  
Vol 20 (3) ◽  
pp. 1565-1590 ◽  
Author(s):  
Samuel E. LeBlanc ◽  
Jens Redemann ◽  
Connor Flynn ◽  
Kristina Pistone ◽  
Meloë Kacenelenbogen ◽  
...  

Abstract. The southeast Atlantic (SEA) region is host to a climatologically significant biomass burning aerosol layer overlying marine stratocumulus. We present the first results of the directly measured above-cloud aerosol optical depth (ACAOD) from the recent ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) airborne field campaign during August and September 2016. In our analysis, we use data from the Spectrometers for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR) instrument and found an average ACAOD of 0.32 at 501 nm (range of 0.02 to 1.04), with an average Ångström exponent (AE) above clouds of 1.71. The AE is much lower at 1.25 for the full column (including below-cloud-level aerosol, with an average of 0.36 at 501 nm and a range of 0.02 to 0.74), indicating the presence of large aerosol particles, likely marine aerosol, in the lower atmospheric column. The ACAOD is observed from 4STAR to be highest near the coast at about 12∘ S, whereas its variability is largest at the southern edge of the average aerosol plume, as indicated by 12 years of MODIS observations. In comparison to MODIS-derived ACAOD and long-term fine-mode plume-average AOD along a diagonal routine track extending out from the coast of Namibia, the directly measured ACAOD from 4STAR is slightly lower than the ACAOD product from MODIS. The peak ACAOD expected from MODIS AOD retrievals averaged over a long term along the routine diagonal flight track (peak of 0.5) was measured to be closer to coast in 2016 at about 1.5–4∘ E, with 4STAR ACAOD averages showing a peak of 0.42. When considering the full observation set over the SEA, by spatially binning each sampled AOD, we obtain a geographically representative mean ACAOD of 0.37. Vertical profiles of AOD showcase the variability in the altitude of the aerosol plume and its separation from the cloud top. We measured larger AOD at a high altitude near the coast than farther from the coast, while generally observing a larger vertical gap farther from the coast. Changes in AOD with altitude are correlated with carbon monoxide, a gas tracer of the biomass burning aerosol plume. Vertical extent of gaps between aerosol and cloud show a wide distribution, with a near-zero gap being most frequent. The gap distribution with longitude is observed to be largest at about 7∘ E, farther from coast than expected from previous studies.


2019 ◽  
Vol 18 (32) ◽  
pp. 4-17
Author(s):  
Le Thi Le ◽  
Lin Tang-Huang ◽  
Canh Van Le ◽  
Lan Thi Pham ◽  
Ha Thi Thu Le ◽  
...  

Aerosol optical depth (AOD) can be retrieved accurately with sequential ground-based measurements of direct and diffuse solar radiance. However, spatial coverage and location frequency cause certain limitations. Hence, satellite image data are a proper tool for obtaining aerosol optical depth products with more spatial information and patterns of aerosol distribution. Currently, aerosol remote sensing may enhance our understanding of the optimal approach to AOD retrieval over urban and rural areas, and how it differs due to the characteristics of surface reflectivity. The article deals with the concepts of contrast reduction, and dark target approaches are examined using Landsat imaging and the observation of a sun photometer for integrating aerosol optical depth distribution over the city of Taipei in Taiwan. For areas with bright surfaces, such as urban areas, the above concepts were applied using the dispersion coefficient method with a sun photometer, in order to reduce errors considerably in the product. In contrast, a dark target algorithm with a relationship of surface reflectance between the blue (0.49 μm), red (0.66 μm), and infrared (2.1 μm) spectral bands is suitable for moist soils and vegetation areas. The retrieval of AOD spatial distribution is compared with MODIS AOD products and AERONET to verify the accuracy of the results. The RMSE ranged from 0.2 to 0.4, and about 50% of the data were within expected error margins (EE=± (0.05+0.15 AODsunphotometer).


2012 ◽  
Vol 12 (12) ◽  
pp. 31483-31505 ◽  
Author(s):  
X. Q. Yap ◽  
M. Hashim

Abstract. Investigating the human health effects of atmospheric particulate matter (PM) using satellite data are gaining more attention due to their wide spatial coverage and temporal advantages. Such epidemiological studies are, however, susceptible to bias errors and resulted in poor predictive output in some locations. Current methods calibrate aerosol optical depth (AOD) retrieved from MODIS to further predict PM. The recent satellite-based AOD calibration uses a mixed effects model to predict location-specific PM on a daily basis. The shortcomings of this daily AOD calibration are for areas of high probability of persistent cloud cover throughout the year such as in the humid tropical region along the equatorial belt. Contaminated pixels due to clouds causes radiometric errors in the MODIS AOD, thus causes poor predictive power on air quality. In contrary, a periodic assessment is more practical and robust especially in minimizing these cloud-related contaminations. In this paper, a simple yet robust calibration approach based on monthly AOD period is presented. We adopted the statistical fitting method with the adjustment technique to improve the predictive power of MODIS AOD. The adjustment was made based on the long-term observation (2001–2006) of PM10-AOD residual error characteristic. Besides, we also incorporated the ground PM measurement into the model as a weighting to reduce the bias of the MODIS-derived AOD value. Results indicated that this robust approach with monthly AOD calibration reported an improved average accuracy of PM10 retrieval from MODIS data by 50% compared to widely used calibration methods based on linear regression models, in addition to enabling further spatial patterns of periodic PM exposure to be undertaken.


Sign in / Sign up

Export Citation Format

Share Document