Multidisciplinary design optimization approach and its application to aerospace engineering

2014 ◽  
Vol 59 (36) ◽  
pp. 5338-5353 ◽  
Author(s):  
Zhenguo Wang ◽  
Wei Huang ◽  
Li Yan
2021 ◽  
Vol 9 (5) ◽  
pp. 478
Author(s):  
Hao Chen ◽  
Weikun Li ◽  
Weicheng Cui ◽  
Ping Yang ◽  
Linke Chen

Biomimetic robotic fish systems have attracted huge attention due to the advantages of flexibility and adaptability. They are typically complex systems that involve many disciplines. The design of robotic fish is a multi-objective multidisciplinary design optimization problem. However, the research on the design optimization of robotic fish is rare. In this paper, by combining an efficient multidisciplinary design optimization approach and a novel multi-objective optimization algorithm, a multi-objective multidisciplinary design optimization (MMDO) strategy named IDF-DMOEOA is proposed for the conceptual design of a three-joint robotic fish system. In the proposed IDF-DMOEOA strategy, the individual discipline feasible (IDF) approach is adopted. A novel multi-objective optimization algorithm, disruption-based multi-objective equilibrium optimization algorithm (DMOEOA), is utilized as the optimizer. The proposed MMDO strategy is first applied to the design optimization of the robotic fish system, and the robotic fish system is decomposed into four disciplines: hydrodynamics, propulsion, weight and equilibrium, and energy. The computational fluid dynamics (CFD) method is employed to predict the robotic fish’s hydrodynamics characteristics, and the backpropagation neural network is adopted as the surrogate model to reduce the CFD method’s computational expense. The optimization results indicate that the optimized robotic fish shows better performance than the initial design, proving the proposed IDF-DMOEOA strategy’s effectiveness.


2010 ◽  
Vol 42 ◽  
pp. 118-121
Author(s):  
Yun Tong Lu ◽  
Chun Jie Wang ◽  
Ang Li ◽  
Han Wang

The rapid development of Multidisciplinary Design Optimization (MDO) approach can simultaneously guarantee the cut of cost on design and optimal performance of spacecraft. Based on the theory of Collaborative Optimization approach (CO) of MDO, present paper proposes the method of CO by integrating Pro/E(3D modeling), Patran/Nastran(FEM analysis) and ADAMS(multi-body dynamic analysis) with the Isight software. In the analysis of the soft-landing gear of Lunar Lander, this method can optimize the mass of the landing gear and meanwhile ensures the reliability of structure statics, structure dynamics and multi-body dynamics. Thus the feasibility, applied value and guideline significance of this method in spacecraft structural design are proven.


Author(s):  
Zhao Liu ◽  
Zhouzhou Song ◽  
Ping Zhu ◽  
Can Xu

Abstract Uncertainty-based multidisciplinary design optimization (UMDO) is an effective methodology to deal with uncertainties in the engineering system design. In order to shorten the design cycle and improve the design efficiency, the time-consuming computer simulation models are often replaced by metamodels, which consequently introduces metamodeling uncertainty into the UMDO procedure. The optimal solutions may deviate from the true results or even become infeasible if the metamodeling uncertainty is neglected. However, it is difficult to quantify and propagate the metamodeling uncertainty, especially in the UMDO process with feedback-coupled systems since the interdisciplinary consistency needs to be satisfied. In this paper, a new approach is proposed to solve the UMDO problem for the feedback-coupled systems under both parametric and metamodeling uncertainties. This approach adopts the decoupled formulation and it applies the Kriging technique to quantify the metamodeling uncertainty. The polynomial chaos expansion (PCE) technique is applied to propagate the two types of uncertainties and represent the interdisciplinary consistency constraints. In the optimization approach, the proposed method uses the iterative construction of PCE models for response means and variances to satisfy the multidisciplinary consistency at the optimal solution. The proposed approach is verified by a mathematical example and applied to the fire satellite design. The results demonstrate the proposed approach can solve the UMDO problem for coupled systems accurately and efficiently.


2010 ◽  
Vol 26 (04) ◽  
pp. 273-289 ◽  
Author(s):  
N. Vlahopoulos ◽  
C. G. Hart

A multidisciplinary design optimization (MDO) framework is used for a conceptual submarine design study. Four discipline-level performances—internal deck area, powering, maneuvering, and structural analysis—are optimized simultaneously. The four discipline-level optimizations are driven by a system level optimization that minimizes the manufacturing cost while at the same time coordinates the exchange of information and the interaction among the discipline-level optimizations. Thus, the interaction among individual optimizations is captured along with the impact of the physical characteristics of the design on the manufacturing cost. A geometric model for the internal deck area of a submarine is created, and resistance, structural design, and maneuvering models are adapted from theoretical information available in the literature. These models are employed as simulation drivers in the discipline-level optimizations. Commercial cost-estimating software is leveraged to create a sophisticated, automated affordability model for the fabrication of a submarine pressure hull at the system level. First, each one of the four discipline optimizations and also the cost-related top level optimization are performed independently. As expected, five different design configurations result, one from each analysis. These results represent the "best" solution from each individual discipline optimization, and they are used as reference for comparison with the MDO solution. The deck area, resistance, structural, maneuvering, and affordability models are then synthesized into a multidisciplinary optimization statement reflecting a conceptual submarine design problem. The results from this coordinated MDO capture the interaction among disciplines and demonstrate the value that the MDO system offers in consolidating the results to a single design that improves the discipline-level objective functions while at the same time produces the highest possible improvement at the system level.


2013 ◽  
Vol 302 ◽  
pp. 583-588 ◽  
Author(s):  
Fredy M. Villanueva ◽  
Lin Shu He ◽  
Da Jun Xu

A multidisciplinary design optimization approach of a three stage solid propellant canister-launched launch vehicle is considered. A genetic algorithm (GA) optimization method has been used. The optimized launch vehicle (LV) is capable of delivering a microsatellite of 60 kg. to a low earth orbit (LEO) of 600 km. altitude. The LV design variables and the trajectory profile variables were optimized simultaneously, while a depleted shutdown condition was considered for every stage, avoiding the necessity of a thrust termination device, resulting in reduced gross launch mass of the LV. The results show that the proposed optimization approach was able to find the convergence of the optimal solution with highly acceptable value for conceptual design phase.


Sign in / Sign up

Export Citation Format

Share Document