An empirical relation for parameter mi in the Hoek–Brown criterion of anisotropic intact rocks with consideration of the minor principal stress and stress-to-weak-plane angle

2020 ◽  
Author(s):  
Tao Wen ◽  
Huiming Tang ◽  
Lei Huang ◽  
Asif Hamza ◽  
Yankun Wang
2021 ◽  
Author(s):  
Qingqing Yang ◽  
Fei Cai

Abstract A new analytical solution is presented for determining equivalent Mohr-Coulomb (MC) shear strength parameters over an arbitrary interval of minor principal stress σ3 from the generalised Hoek-Brown (HB) criterion using least squares method. Comparison with several published examples demonstrates that the proposed solution had a capacity to accurately determine equivalent MC parameters over a given interval of σ3, as well as instantaneous MC parameters by using a very small interval of σ3. EMC parameters depended heavily on the interval of σ3, which highlighted the importance of intervals of σ3. A calculation case shows that the equivalent internal friction angle and cohesion over the interval of σ3 from tension cut-off σcut−off to maximum minor principal stress σ3max were approximately 12% smaller and 10.3% larger than those over an interval from tensile strength to σ3max, respectively. The proposed solution offers great flexibility for the application of the HB criterion with existing methods based on the MC criterion for rock engineering practice.


2020 ◽  
Vol 57 (3) ◽  
pp. 453-461 ◽  
Author(s):  
Piyush Punetha ◽  
Sanjay Nimbalkar ◽  
Hadi Khabbaz

Three-dimensional cellular geoinclusions (e.g., geocells, scrap tires) offer all-around confinement to the granular infill materials, thus improving their strength and stiffness. The accurate evaluation of extra confinement offered by these geoinclusions is essential for predicting their performance in the field. The existing models to evaluate the additional confinement are based on either a plane-strain or axisymmetric stress state. However, these geoinclusions are more likely to be subjected to the three-dimensional stresses in actual practice. This note proposes a semi-empirical model to evaluate the additional confinement provided by cellular geoinclusions under the three-dimensional stress state. The proposed model is successfully validated against the experimental data. A parametric study is conducted to investigate the influence of input parameters on additional confinement. Results reveal that the simplification of the three-dimensional stress state into axisymmetric or plane-strain condition has resulted in inaccurate and unreliable results. The extra confinement offered by the geoinclusion shows substantial variation along the intermediate and minor principal stress directions depending on the intermediate principal stress, infill soil, and geoinclusion properties. The magnitude of additional confinement increases with an increase in the geoinclusion modulus. The findings are crucial for accurate assessment of the in situ performance of three-dimensional cellular geoinclusions.


1971 ◽  
Vol 44 (3) ◽  
pp. 758-770
Author(s):  
W. O. Yandell

Abstract A rigorous mechano-lattice analogy analysis for calculating the hysteretic sliding friction of and stresses in rubber sliding on variously shaped asperities is presented. The analysis allows large strains and any Poisson's Ratio, rigidity or damping factor of the rubber. The analysis was used to calculate the distributions of minor principal stress in rubber sliding over smooth and frictional prisms with different sharpnesses and over a cylinder. The potentially disruptive stress regions were thus revealed and compared. The effect of changes in the Poisson's Ratio and of the damping factor of the rubber were also examined. It was postulated that the fine texture generates more stress-strain hysteretic heat which may lead to the more rapid abrasion observed by some workers.


2015 ◽  
Vol 1089 ◽  
pp. 286-291
Author(s):  
Chao Tian ◽  
Yong Gang Li ◽  
Zhi Xiong Zhang

For the retaining wall in translation, in this paper the writers present the minor principal stresses trajectory which named minor principal stress arches. By discussing the results of the various arch curves in arching effect with different displacements of retaining wall which include the arch curves in ultimate model of soil and the arch curves in none limit state of soil. It gets the soil arch curve change rule under different state of the displacements, different friction angles and different height: the arch curve turn gentle when the displacements increase.


1983 ◽  
Vol 20 (1) ◽  
pp. 120-130 ◽  
Author(s):  
L. V. Medeiros ◽  
Z. Eisenstein

Laboratory investigation of the stress–strain behaviour of glacial till (stiff silty clay) and dense preglacial sand have been carried out. Special attention has been devoted to investigation of the influence of different stress paths on the stress–strain response of these materials. Since these tests were performed primarily for an analytical study of the behaviour of a deep retaining structure, the stress paths chosen for testing were typical of stress conditions for this field situation. Triaxial and plane strain drained tests on till were run in passive compression (with increasing major principal stress and constant minor principal stress) and in active compression (with constant major principal stress and decreasing minor principal stress). On the sand, only triaxial tests were carried out. These experiments were in passive compression and in active extension (with decreasing major principal stress and constant minor principal stress).The results of different tests were compared at corresponding stress and strain levels. They indicated an appreciably decreased stiffness along the passive compression stress path compared with that in the active compression and active extension tests. Also, a comparison between the triaxial and plane strain tests for the till showed a marked influence of the intermediate principal stress. Although the results were intended for use in a stress path dependent, nonlinear elastic analysis they are discussed and explained in terms of a more general elastoplastic model of soil behaviour. Keywords: stress–strain relationship, stress path, laboratory testing, stiff clay, dense sand.


2021 ◽  
Vol 1 ◽  
pp. 95-97
Author(s):  
Christoph Lüdeling ◽  
Dirk Naumann ◽  
Wolfgang Minkley

Abstract. According to the state of the art in mining and repository research, undisturbed rock salt is impermeable to fluids. Hence, rock salt formations are considered as host rock for nuclear waste repositories. Viscous, polycrystalline salt rock with low humidity contains no connected pore spaces. Two mechanisms are known for fluid transport: (a) damage due to large deviatoric and tensile stresses generates dilatancy, and hence permeability. (b) Fluid pressure exceeding the minor principal stress can open pathways (pressure-driven percolation, Minkley et al., 2013). To assess barrier integrity of rock salt barriers, the dilatancy and minimal stress criteria have been derived. Recently (Ghanbarzadeh et al., 2015; Lewis and Holness, 1996), high permeabilities in rock salt have been postulated under certain conditions. In particular, at high stresses and temperatures, including possible repository conditions, rock salt is claimed to develop a connected, thus permeable, pore space. In the PeTroS project (Minkley et al., 2020), we investigated fluid transport in the supposedly permeable region. Five points in pressure-temperature space were defined – pressures of 18 and 36 MPa, temperatures of 140, 160, and 180 ∘C. At each point, experiments with both nitrogen and saturated NaCl solution (brine) were performed. Samples were prepared from natural rock salt of German Zechstein formations, both bedded and domal salt. Sample material was generally relatively pure rock salt with minor impurities. Cylindrical samples (diameter 100 mm, length 200 mm) were loaded in a triaxial (Kármán) cell. Fluid pressure was applied to a central pressure chamber; any transmitted fluid was collected and extracted at the secondary side. The entire cell was heated to the specified temperature. Experiments generally comprised an isotropic phase (several stages of fluid pressure almost up to the confining stress) and a fluid breakthrough phase (lowering of axial stress by strain-controlled extension). After the test, a coloured tracer fluid was injected to visualise fluid discharge points. Fluid breakthroughs with fluid pressure above the minor principal stress were observed at all five pressure-temperature conditions. Some samples showed an approximately Darcian flow at fluid pressure below the minor principal stress, with permeabilities in the order of 10−22 m2, as is regularly observed due to the small size and initial damage from sample preparation (Popp et al., 2007). Tests consistently showed a gradual decrease of flow rate, i.e. reduction of the initial damage. A stable permeability over longer times, as would be expected due to the formation of a connected pore space network, was not observed in any of the experiments. Intriguingly, experiments with brine showed no initial permeability even though the wetting fluid should plausibly favour the formation of a stable connected pore network. Predictions of the static pore scale theory (Ghanbarzadeh et al., 2015) could thus not be confirmed. Regarding repositories for heat-generating waste, it can be concluded that from a geomechanical point of view, the dilatancy and minimal stress criteria are the relevant criteria for barrier integrity even at higher pressure and temperature.


Sign in / Sign up

Export Citation Format

Share Document