Arch with Various Wall Movements in Active Earth Pressure Abstract

2015 ◽  
Vol 1089 ◽  
pp. 286-291
Author(s):  
Chao Tian ◽  
Yong Gang Li ◽  
Zhi Xiong Zhang

For the retaining wall in translation, in this paper the writers present the minor principal stresses trajectory which named minor principal stress arches. By discussing the results of the various arch curves in arching effect with different displacements of retaining wall which include the arch curves in ultimate model of soil and the arch curves in none limit state of soil. It gets the soil arch curve change rule under different state of the displacements, different friction angles and different height: the arch curve turn gentle when the displacements increase.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sahar Ghobadi ◽  
Hadi Shahir

Purpose The purpose of this paper is to study the distribution of active earth pressure in retaining walls with narrow cohesion less backfill considering arching effects. Design/methodology/approach To this end, the approach of principal stresses rotation was used to consider the arching effects. Findings According to the presented formulation, the active soil pressure distribution is nonlinear with zero value at the wall base. The proposed formulation implies that by increasing the frictional forces at both sides of the backfill, the arching effect is increased and so, the lateral earth pressure on the retaining wall is decreased. Also, by narrowing the backfill space, the lateral earth pressure is extremely decreased. Originality/value A comprehensive analytical solution for the active earth pressure of narrow backfills is presented, such that the effects of the surcharge and the characteristics of the stable back surface are considered. The magnitude and height of the application of lateral active force are also derived.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Weidong Hu ◽  
Kangxing Liu ◽  
Xinnian Zhu ◽  
Xiaolong Tong ◽  
Xiyu Zhou

The horizontal differential layer element method was used to study the active earth pressure of the finite-width soil formed by the rigid retaining wall for the embankment or adjacent foundation pits. The cohesionless soil was taken as the research object, and the soil arch theory was introduced based on the translation mode of rigid retaining wall and the linear sliding fracture surface. The minor principal stress line was assumed as circular, considering the deflected principal stress as soil arching effect. The shear stress between level soil layers in the failure wedge was calculated, and the differential level layer method was modified. Then, the theoretical formula of the active earth pressure, the resultant earth pressure, and the point of application of resultant earth pressure were obtained using this revised method. The predictions by the proposed formula were compared with the existing methods combined with the cases. It is shown that the resultant finite pressure increases gradually and approaches to Coulomb active earth pressure values when the soil is infinite, with the increase of the ratios of the backfill width to height. Moreover, the horizontal pressure for limited soils is distributed nonlinearly along the wall height. Considering the shear stress between level soil layers and the soil arching effect, the position of application point of the resultant active earth pressure by the proposed formulation is higher than that of Coulomb’s solution. The wall is rougher, and the resultant pressure will be smaller. The application point distance from the bottom of the wall will increase. Finally, an experiment was conducted to verify the distribution of the active earth pressure for finite soil against rigid retaining wall, and the research results agree well with those of the experimented observations.


2021 ◽  
Author(s):  
Jun-feng Jiang ◽  
Qi-hua Zhao ◽  
Shuairun Zhu ◽  
Sheqin Peng ◽  
Yonghong Wu

Abstract A new approach is proposed to evaluate the non-limit active earth pressure in cohesive-frictional based on the horizontal slices method and limit equilibrium method. This approach takes into account the arching effect, displacement, average shear stress of the soil slice, rupture angle and tension cracks. The accuracy of the proposed method is demonstrated by comparing the experimental results and other theoretical methods. The comparison results show that the proposed approach is suitable for calculating the non-limit active earth pressure in cohesive-frictional soil and cohesionless soil. Additionally, the empirical formulations of the mobilized internal friction angle and soil-wall interface friction angle usually used to cohesionless soil are still applied to cohesive-frictional soil through comparison calculated results of other theoretical methods and finite element method. Some valid formulations of the rupture angle and tension cracks were derived considering the cohesion, wall height, and unit weight.


2020 ◽  
Vol 10 (9) ◽  
pp. 3243
Author(s):  
Meilin Liu ◽  
Xiangsheng Chen ◽  
Zhenzhong Hu ◽  
Shuya Liu

For c-φ soil formation (cohesive soil) of limited width with ground surface overload behind a deep retaining structure, a modified active earth pressure calculation model is established in this study. And three key issues are addressed through improved soil arching effect. First, the soil-wall interaction mechanism is determined by considering the soil arching effect. The slip surface of a limited soil is proved to be a double-fold line passing through the retaining wall toe and intersecting the side wall of the existing underground structure until it reaches the ground surface along the existing side wall. Second, the limited width boundary is explicated. And third, the variation in the active earth pressure from parameters of limited c-φ soil is determined. The lateral active earth pressure coefficient is nonlinear distributed based on the improved soil arching effect of the symmetric catenary curve. Furthermore, the active earth pressure distribution, the tension crack at the top of the retaining wall and the resultant force and its action point were obtained. By comparing with the existing analytical methods, such as the Rankine method, it demonstrates that the model proposed in this study is much closer to the measured and numerical results. Ignoring the influence of soil cohesion and the limited width will exponentially reduce the overall stability of the retaining structure and increase the risk of accidents.


2012 ◽  
Vol 170-173 ◽  
pp. 755-761 ◽  
Author(s):  
Wen Biao Liang ◽  
Jun Hai Zhao ◽  
Yan Li ◽  
Chang Guang Zhang ◽  
Su Wang

Based on the unified solution of shear strength in terms of double stress state variables for unsaturated soils, whilst considering the effect of the intermediate principal stress rationally, the unified solution of Coulomb’s active earth pressure for unsaturated soils without cracks is developed. Comparability of the solution is analyzed and influencing characteristic of each factor is obtained. The research result indicates that: the intermediate principal stress and matric suction have obvious impacts on Coulomb’s active earth pressure for unsaturated soils; Coulomb’s active earth pressure has been decreasing until zero with the increase of unified strength theory parameter and matric suction; Coulomb’s active earth pressure increases with the increase of grading angle of retaining wall and slop angle of backfill, but decreases with the increase of matric suction, effective internal friction angle and matric suction angle, while external friction angle has no obvious influence. The proposed unified solution of Coulomb’s active earth pressure enjoys a wider application, and unified solution of Rankine’s active earth pressure is just the special case. The results are of great significance to soil pressure determination such as slope and foundation pit, and to retaining structures design.


2016 ◽  
Vol 16 (3) ◽  
pp. 04015082 ◽  
Author(s):  
Pingping Rao ◽  
Qingsheng Chen ◽  
Yitao Zhou ◽  
Sanjay Nimbalkar ◽  
Gabriele Chiaro

2021 ◽  
Author(s):  
Hu Weidong ◽  
Zhu Xinnian ◽  
Zeng Yongqing ◽  
Xiaohong Liu ◽  
Peng Chucai

Abstract A reasonable method is proposed to calculate the active earth pressure of finite soils based on the drum deformation mode of the flexible retaining wall close to the basement’s outer wall. The flexible retaining wall with cohesionless sand is studied, and the ultimate failure angle of finite soils close to the basement’s outer wall is obtained using the Coulomb theory. Soil arch theory is led to get the earth pressure coefficient in the subarea using the trace line of minor principal stress of circular arc after stress deflection. The soil layers at the top and bottom part of the retaining wall are restrained when the drum deformation occurs, and the soil layers are in a non-limit state. The linear relationship between the wall movement’s magnitude and the mobilization of the internal friction angle and the wall friction anger is presented. The level layer analysis method is modified to propose the resultant force of active earth pressure, the action point’s height, and the pressure distribution. Model tests are carried out to emulate the process of drum deformation and soil rupture with limited width. Through image analysis, it is found that the failure angle of soil within the limited width is larger than that of infinite soil. With the increase of the aspect ratio, the failure angle gradually reduces and tends to be constant. Compared with the test results, it is showed that the horizontal earth pressure reduces with the reduction of the aspect ratio within critical width, and the resultant force decreases with the increase of the limit state region under the same ratio. The middle part of the distribution curve is concave. The active earth pressure strength decreases less than Coulomb’s value, the upper and lower soil layers are in the non-limit state, and the active earth pressure strength is more than Coulomb’s value.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hengli Wang ◽  
Zhengsheng Zou ◽  
Jian Liu ◽  
Xinyu Wang

When considering the friction and bonding force between the back of the retaining wall and the horizontal fill behind the wall, the principal stress of the soil element near the vertical back of the retaining wall is no longer vertical and horizontal but deflects to a certain extent. When the surface of the backfill becomes inclined, the principal stress of the soil behind the wall deflects in a more complicated way. In this paper, the cohesion of the soil element in the fill with an inclined surface is assumed, and the formulas for calculating the active and passive earth pressures of the retaining wall with inclined cohesive backfill are derived by rotating the principal stress of the soil element behind the wall. The proposed method is compared with the existing algorithm, and the influences of the inclination and the cohesion of the fill are analyzed. The results show that the proposed method is more universal. Both the active and passive earth pressures increase rapidly with the increase of the inclination of the fill. The active earth pressure and its horizontal component decrease with the increase of the cohesion of the fill, while the passive earth pressure and its horizontal component increase with the increase of the cohesion of the fill.


Sign in / Sign up

Export Citation Format

Share Document