scholarly journals Assessment and comparison of AFLP and SSR based molecular genetic diversity in Indian isolates of Ascochyta rabiei, a causal agent of Ascochyta blight in chickpea (Cicer arietinum L.)

2009 ◽  
Vol 8 (2) ◽  
pp. 87-97 ◽  
Author(s):  
Rajeev Varshney ◽  
Suresh Pande ◽  
Seetha Kannan ◽  
Thudi Mahendar ◽  
Mamta Sharma ◽  
...  

2009 ◽  
Vol 89 (3) ◽  
pp. 515-516 ◽  
Author(s):  
B. Taran ◽  
T. Warkentin ◽  
S. Banniza ◽  
A. Vandenberg

CDC Corinne, a desi chickpea (Cicer arietinum L.) cultivar, was released in 2008 by the Crop Development Centre, University of Saskatchewan, for distribution to Select seed growers in western Canada through the Variety Release Program of the Saskatchewan Pulse Growers. CDC Corinne has a pinnate leaf type, fair resistance to ascochyta blight [Ascochyta rabiei (Pass.) Lab.], medium maturity, medium seed size and higher yield potential than Myles in the Brown and Dark Brown soil zones of the Canadian prairies. Key words: Chickpea, Cicer arietinum L., cultivar description, ascochyta blight



Genome ◽  
2007 ◽  
Vol 50 (1) ◽  
pp. 26-34 ◽  
Author(s):  
B. Tar’an ◽  
T.D. Warkentin ◽  
A. Tullu ◽  
A. Vandenberg

Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Lab., is one of the most devastating diseases of chickpea ( Cicer arietinum L.) worldwide. Research was conducted to map genetic factors for resistance to ascochyta blight using a linkage map constructed with 144 simple sequence repeat markers and 1 morphological marker (fc, flower colour). Stem cutting was used to vegetatively propagate 186 F2 plants derived from a cross between Cicer arietinum L. ‘ICCV96029’ and ‘CDC Frontier’. A total of 556 cutting-derived plants were evaluated for their reaction to ascochyta blight under controlled conditions. Disease reaction of the F1 and F2 plants demonstrated that the resistance was dominantly inherited. A Fain’s test based on the means and variances of the ascochyta blight reaction of the F3 families showed that a few genes were segregating in the population. Composite interval mapping identified 3 genomic regions that were associated with the reaction to ascochyta blight. One quantitative trait locus (QTL) on each of LG3, LG4, and LG6 accounted for 13%, 29%, and 12%, respectively, of the total estimated phenotypic variation for the reaction to ascochyta blight. Together, these loci controlled 56% of the total estimated phenotypic variation. The QTL on LG4 and LG6 were in common with the previously reported QTL for ascochyta blight resistance, whereas the QTL on LG3 was unique to the current population.



2005 ◽  
Vol 56 (4) ◽  
pp. 317 ◽  
Author(s):  
S. Pande ◽  
K. H. M. Siddique ◽  
G. K. Kishore ◽  
B. Bayaa ◽  
P. M. Gaur ◽  
...  

Ascochyta blight (AB), caused by Ascochyta rabiei is a major disease of chickpea (Cicer arietinum L.), especially in areas where cool, cloudy, and humid weather persists during the crop season. Several epidemics of AB causing complete yield loss have been reported. The fungus mainly survives between seasons through infected seed and in infected crop debris. Despite extensive pathological and molecular studies, the nature and extent of pathogenic variability in A. rabiei have not been clearly established. Accumulation of phenols, phytoalexins (medicarpin and maackiain), and hydrolytic enzymes has been associated with host-plant resistance (HPR). Seed treatment and foliar application of fungicides are commonly recommended for AB management, but further information on biology and survival of A. rabiei is needed to devise more effective management strategies. Recent studies on inheritance of AB resistance indicate that several quantitative trait loci (QTLs) control resistance. In this paper we review the biology of A. rabiei, HPR, and management options, with an emphasis on future research priorities.



2009 ◽  
Vol 89 (3) ◽  
pp. 519-520
Author(s):  
T. Warkentin ◽  
B. Taran ◽  
S. Banniza ◽  
A. Vandenberg

CDC Vanguard, a desi chickpea (Cicer arietinum L.) cultivar, was released in 2006 by the Crop Development Centre, University of Saskatchewan for distribution to Select seed growers in western Canada through the Variety Release Program of the Saskatchewan Pulse Growers. CDC Vanguard has a pinnate leaf type, fair resistance to ascochyta blight [Ascochyta rabiei (Pass.) Lab.], medium maturity, medium seed size and high yield potential in the Brown and Dark Brown soil zones of the Canadian prairies.Key words: Chickpea, Cicer arietinum L., cultivar description, ascochyta blight



2009 ◽  
Vol 89 (3) ◽  
pp. 517-518 ◽  
Author(s):  
B. Taran ◽  
T. Warkentin ◽  
R. Malhotra ◽  
S. Banniza ◽  
A. Vandenberg

CDC Luna, a kabuli chickpea (Cicer arietinum L.) cultivar, was released in 2007 by the Crop Development Centre, University of Saskatchewan, for distribution to Select seed growers in western Canada through the Variety Release Program of the Saskatchewan Pulse Growers. CDC Luna has a pinnate leaf type, fair resistance to ascochyta blight [Ascochyta rabiei (Pass.) Lab.], medium-late maturity, medium-large seed size and similar yield potential with the check cultivar Amit in the Brown and Dark Brown soil zones of the Canadian prairies.Key words: Chickpea, Cicer arietinum L., cultivar description, ascochyta blight



2005 ◽  
Vol 85 (4) ◽  
pp. 907-908
Author(s):  
Tom Warkentin ◽  
Sabine Banniza ◽  
Albert Vandenberg

CDC ChiChi, a kabuli chickpea (Cicer arietinum L.) cultivar, was released in 2002 by the Crop Development Centre, University of Saskatchewan for distribution to Select seed growers in western Canada through the Variety Release Program of the Saskatchewan Pulse Growers. CDC ChiChi has a pinnate leaf type, poor ascochyta blight [Ascochyta rabiei (Pass.) Labr.] resistance, medium maturity, large seed size and good yielding ability in the Brown and Dark Brown soil zones of the Canadian prairies. Key words: Chickpea, Cicer arietinum L., cultivar description, ascochyta blight



2003 ◽  
Vol 83 (4) ◽  
pp. 799-800 ◽  
Author(s):  
A. Vandenberg ◽  
T. Warkentin ◽  
A. Slinkard

CDC Nika, a desi chickpea (Cicer arietinum L.) cultivar, was released in 2000 by the Crop Development Centre, University of Saskatchewan, for distribution to Select seed growers in western Canada through the Variety Release Committee of the Saskatchewan Pulse Growers. CDC Nika has a pinnate leaf type, fair ascochyta blight [Ascochyta rabiei (Pass.) Labr.] resistance, medium maturity, large, plump seeds with a tan coloured seed coat and good yielding ability in the Brown and Dark Brown soil zones of the Canadian prairies. Key words: Chickpea, Cicer arietinum L., cultivar description, ascochyta blight



2006 ◽  
Vol 97 (2-3) ◽  
pp. 121-134 ◽  
Author(s):  
Y.T. Gan ◽  
K.H.M. Siddique ◽  
W.J. MacLeod ◽  
P. Jayakumar


2008 ◽  
Vol 59 (6) ◽  
pp. 554 ◽  
Author(s):  
M. Imtiaz ◽  
M. Materne ◽  
K. Hobson ◽  
M. van Ginkel ◽  
R. S. Malhotra

Simple sequence-repeat (SSR) and sequence characterised amplified regions (SCARs) have been used to characterise the genetic diversity of chickpea germplasm. A set of 48 genotypes comprising cultigen, landraces, and wild relatives important for breeding purposes was used to determine the genetic similarity between genotypes and to assess the association between ascochyta blight (AB) and SCAR phenotypes. The 21 SSR markers amplified a total of 370 alleles, with an average of ~17 alleles per SSR locus among the 48 genotypes. Polymorphic information content (PIC) values ranged from 0.37 for the XGA13 locus to 0.93 for the XGA106. Principal coordinate analysis (PCO) of genetic similarity (GS) estimates revealed a clear differentiation of the chickpea genotypes into 5 groups, which were generally consistent with available pedigree information. Comparison of SCAR and AB phenotypes enabled us to tag the common source(s) of AB resistance in the breeding collection. Based on the SCAR phenotypes, it was evident that the studied chickpea genotypes, including worldwide-known AB-resistant lines (ICC12004, ILC72, ILC3279), carry at least one common source of resistance to AB. Since SSR markers are polymerase chain reaction (PCR)-based markers, highly polymorphic, and amenable to high-throughput technologies, they are therefore well suited for studies of genetic diversity and cultivar identification in chickpea. The broad level of genetic diversity detected in the chickpea germplasm should be useful for selective breeding for specific traits such as AB, backcrossing, and in enhancing the genetic base of breeding programs.



Sign in / Sign up

Export Citation Format

Share Document