The rate of convergence of proximal method of multipliers for second-order cone optimization problems

Author(s):  
Li Chu ◽  
Bo Wang ◽  
Liwei Zhang ◽  
Hongwei Zhang
2005 ◽  
Vol 15 (2) ◽  
pp. 301-306 ◽  
Author(s):  
Nada Djuranovic-Milicic

In this paper an algorithm for LC1 unconstrained optimization problems, which uses the second order Dini upper directional derivative is considered. The purpose of the paper is to establish general algorithm hypotheses under which convergence occurs to optimal points. A convergence proof is given, as well as an estimate of the rate of convergence.


Author(s):  
Sicheng He ◽  
Mohammad Shahabsafa ◽  
Weiming Lei ◽  
Ali Mohammad-Nezhad ◽  
Tamás Terlaky ◽  
...  

Author(s):  
Jianzhe Zhen ◽  
Frans J. C. T. de Ruiter ◽  
Ernst Roos ◽  
Dick den Hertog

In this paper, we consider uncertain second-order cone (SOC) and semidefinite programming (SDP) constraints with polyhedral uncertainty, which are in general computationally intractable. We propose to reformulate an uncertain SOC or SDP constraint as a set of adjustable robust linear optimization constraints with an ellipsoidal or semidefinite representable uncertainty set, respectively. The resulting adjustable problem can then (approximately) be solved by using adjustable robust linear optimization techniques. For example, we show that if linear decision rules are used, then the final robust counterpart consists of SOC or SDP constraints, respectively, which have the same computational complexity as the nominal version of the original constraints. We propose an efficient method to obtain good lower bounds. Moreover, we extend our approach to other classes of robust optimization problems, such as nonlinear problems that contain wait-and-see variables, linear problems that contain bilinear uncertainty, and general conic constraints. Numerically, we apply our approach to reformulate the problem on finding the minimum volume circumscribing ellipsoid of a polytope and solve the resulting reformulation with linear and quadratic decision rules as well as Fourier-Motzkin elimination. We demonstrate the effectiveness and efficiency of the proposed approach by comparing it with the state-of-the-art copositive approach. Moreover, we apply the proposed approach to a robust regression problem and a robust sensor network problem and use linear decision rules to solve the resulting adjustable robust linear optimization problems, which solve the problem to (near) optimality. Summary of Contribution: Computing robust solutions for nonlinear optimization problems with uncertain second-order cone and semidefinite programming constraints are of much interest in real-life applications, yet they are in general computationally intractable. This paper proposes a computationally tractable approximation for such problems. Extensive computational experiments on (i) computing the minimum volume circumscribing ellipsoid of a polytope, (ii) robust regressions, and (iii) robust sensor networks are conducted to demonstrate the effectiveness and efficiency of the proposed approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Yasushi Narushima ◽  
Hideho Ogasawara ◽  
Shunsuke Hayashi

We deal with complementarity problems over second-order cones. The complementarity problem is an important class of problems in the real world and involves many optimization problems. The complementarity problem can be reformulated as a nonsmooth system of equations. Based on the smoothed Fischer-Burmeister function, we construct a smoothing Newton method for solving such a nonsmooth system. The proposed method controls a smoothing parameter appropriately. We show the global and quadratic convergence of the method. Finally, some numerical results are given.


2021 ◽  
Vol 11 (11) ◽  
pp. 4987
Author(s):  
Chun Sing Lai ◽  
Mengxuan Yan ◽  
Xuecong Li ◽  
Loi Lei Lai ◽  
Yang Xu

This work presents a new coordinated operation (CO) framework for electricity and natural gas networks, considering network congestions and demand response. Credit rank (CR) indicator of coupling units is introduced, and gas consumption constraints information of natural gas fired units (NGFUs) is given. Natural gas network operator (GNO) will deliver this information to an electricity network operator (ENO). A major advantage of this operation framework is that no frequent information interaction between GNO and ENO is needed. The entire framework contains two participants and three optimization problems, namely, GNO optimization sub-problem-A, GNO optimization sub-problem-B, and ENO optimization sub-problem. Decision sequence changed from traditional ENO-GNO-ENO to GNO-ENO-GNO in this novel framework. Second-order cone (SOC) relaxation is applied to ENO optimization sub-problem. The original problem is reformulated as a mixed-integer second-order cone programming (MISOCP) problem. For GNO optimization sub-problem, an improved sequential cone programming (SCP) method is applied based on SOC relaxation and the original sub-problem is converted to MISOCP problem. A benchmark 6-node natural gas system and 6-bus electricity system is used to illustrate the effectiveness of the proposed framework. Considering pipeline congestion, CO, with demand response, can reduce the total cost of an electricity network by 1.19%, as compared to −0.48% using traditional decentralized operation with demand response.


Sign in / Sign up

Export Citation Format

Share Document