Effects of annealing on microstructure, mechanical and electrical properties of AlCrCuFeMnTi high entropy alloy

2013 ◽  
Vol 28 (6) ◽  
pp. 1196-1200 ◽  
Author(s):  
Zhisheng Nong ◽  
Jingchuan Zhu ◽  
Xiawei Yang ◽  
Hailing Yu ◽  
Zhonghong Lai
2018 ◽  
Vol 210 ◽  
pp. 84-87 ◽  
Author(s):  
Xiaobin Feng ◽  
Jinyu Zhang ◽  
Ziren Xia ◽  
Wei Fu ◽  
Kai Wu ◽  
...  

2019 ◽  
Vol 375 ◽  
pp. 854-863 ◽  
Author(s):  
Yen-Yu Chen ◽  
Sheng-Bo Hung ◽  
Chaur-Jeng Wang ◽  
Wen-Chung Wei ◽  
Jyh-Wei Lee

Author(s):  
J. Mayandi ◽  
T. G. Finstad ◽  
M. Stange ◽  
G. C. Vásque ◽  
M. F. Sunding ◽  
...  

AbstractOxide-containing films were made by reactively sputtering a high-entropy alloy target of CrFeCoNiCu. We report on a wide range of changes to the electrical properties made by different heat treatments in oxidizing and reducing atmospheres, respectively. We combine temperature-dependent Hall effect measurements down to 10 K to study the transport mechanisms and correlate that with structural measurements by x-ray diffraction and scanning electron microscopy. The measured/effective resistivity could be varied between 1.3 × 10−4 Ω cm and 1.2 × 10−3 Ω cm by post-deposition processing. The temperature coefficient of resistivity could be varied between − 1.2 × 10−3 K−1 through 0 and to + 0.7 × 10−3 K−1. The key to the variation is controlling the morphology and topology of the film. The conduction of charge carriers is dominated by the relative contribution of weak localization and alloy scattering by varying the degree of disorder in the metallic high-entropy alloy and its topology.


2019 ◽  
Author(s):  
Nirmal Kumar ◽  
Subramanian Nellaiappan ◽  
Ritesh Kumar ◽  
Kirtiman Deo Malviya ◽  
K. G. Pradeep ◽  
...  

<div>Renewable harvesting clean and hydrogen energy using the benefits of novel multicatalytic materials of high entropy alloy (HEA equimolar Cu-Ag-Au-Pt-Pd) from formic acid with minimum energy input has been achieved in the present investigation. The synthesis effect of pristine elements in the HEA drives the electro-oxidation reaction towards non-carbonaceous pathway . The atomistic simulation based on DFT rationalize the distinct lowering of the d-band center for the individual atoms in the HEA as compared to the pristine counterparts. This catalytic activity of the HEA has also been extended to methanol electro-oxidation to show the unique capability of the novel catalyst. The nanostructured HEA, properties using a combination of casting and cry omilling techniques can further be utilized as fuel cell anode in direct formic acid/methanol fuel cells (DFFE).<br></div>


Author(s):  
Janez Dolinšek ◽  
Stanislav Vrtnik ◽  
J. Lužnik ◽  
P. Koželj ◽  
M. Feuerbacher

2006 ◽  
Vol 31 (6) ◽  
pp. 723-736 ◽  
Author(s):  
Keng-Hao Cheng ◽  
Chia-Han Lai ◽  
Su-Jien Lin ◽  
Jien-Wei Yeh

2010 ◽  
Vol 35 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Fares Serradj ◽  
Rebal Guemini ◽  
Hichem Farh ◽  
Karim Djemmal

Sign in / Sign up

Export Citation Format

Share Document