High temperature electrical properties and oxidation resistance of V-Nb-Mo-Ta-W high entropy alloy thin films

2019 ◽  
Vol 375 ◽  
pp. 854-863 ◽  
Author(s):  
Yen-Yu Chen ◽  
Sheng-Bo Hung ◽  
Chaur-Jeng Wang ◽  
Wen-Chung Wei ◽  
Jyh-Wei Lee
Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 638 ◽  
Author(s):  
Wenyuan Cui ◽  
Wei Li ◽  
Wei-Ting Chen ◽  
Frank Liou

Ti6Al4V has been recognized as an attractive material, due to its combination of low density and favorable mechanical properties. However, its insufficient oxidation resistance has limited the high-temperature application. In this work, an AlCoCrFeNiTi0.5 high-entropy alloy (HEA) coating was fabricated on a Ti6Al4V substrate using laser metal deposition (LMD). The microstructure and isothermal oxidation behaviors were investigated. The microstructure of as-deposited HEA exhibited a Fe, Cr-rich A2 phase and an Al, Ni, Ti-enriched B2 phase. Its hardness was approximately 2.1 times higher than that of the substrate. The oxidation testing at 700 °C and 800 °C suggested that the HEA coating has better oxidation resistance than the Ti6Al4V substrate. The oxide scales of the Ti6Al4V substrate were mainly composed of TiO2, while continuous Al2O3 and Cr2O3 were formed in the HEA coatings and could be attributed to oxidation resistance improvement. This work provides an approach to mitigate the oxidation resistance of Ti6Al4V and explore the applicability of the HEA in a high-temperature environment.


2017 ◽  
Vol 35 (1-3) ◽  
pp. 168-176 ◽  
Author(s):  
Franz Müller ◽  
Bronislava Gorr ◽  
Hans-Jürgen Christ ◽  
Hans Chen ◽  
Alexander Kauffmann ◽  
...  

2018 ◽  
Vol 210 ◽  
pp. 84-87 ◽  
Author(s):  
Xiaobin Feng ◽  
Jinyu Zhang ◽  
Ziren Xia ◽  
Wei Fu ◽  
Kai Wu ◽  
...  

Author(s):  
Jiesheng Han ◽  
Bo Su ◽  
Junhu Meng ◽  
Aijun Zhang ◽  
Youzhi Wu

The poor oxidation resistance of refractory high-entropy alloys (RHEAs) is a major obstacle for their use in high-temperature engineering applications. Anti-oxidation coating technology is an effective method for improving the oxidation resistance. In this paper, the Si-20Cr-20Fe coating was prepared on MoNbTaTiW RHEA by a fused slurry method. The microstructural evolution and compositions of the silicide coating under high-temperature oxidation environment were studied. The results show that the silicide coating could effectively prevent the oxidation of the MoNbTaTiW RHEA. The initial silicide coating had a double-layer structure; a high silicon-content layer mainly composed of MSi2 as the outer layer and a low silicon-content layer mainly contained M5Si3 as the inner layer. Under high-temperature oxidation conditions, the silicon element diffused from the silicide coating to the RHEA substrate while the oxidation of the coating occurred. After oxidation, the coating was composed of an outer oxide layer and an inner silicide layer. The silicide layer moved toward the inside of the substrate, led to the increase of its thickness. Compared with the initial silicified layer, its structure did not change significantly. The structure and compositions of the oxide layer on the outer surface strongly depended on the oxidation temperature. This paper provides a strategy for protecting RHEAs from oxidation at high-temperature environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chokkakula L. P. Pavithra ◽  
Reddy Kunda Siri Kiran Janardhana ◽  
Kolan Madhav Reddy ◽  
Chandrasekhar Murapaka ◽  
Joydip Joardar ◽  
...  

AbstractDiscovery of advanced soft-magnetic high entropy alloy (HEA) thin films are highly pursued to obtain unidentified functional materials. The figure of merit in current nanocrystalline HEA thin films relies in integration of a simple single-step electrochemical approach with a complex HEA system containing multiple elements with dissimilar crystal structures and large variation of melting points. A new family of Cobalt–Copper–Iron–Nickel–Zinc (Co–Cu–Fe–Ni–Zn) HEA thin films are prepared through pulse electrodeposition in aqueous medium, hosts nanocrystalline features in the range of ~ 5–20 nm having FCC and BCC dual phases. The fabricated Co–Cu–Fe–Ni–Zn HEA thin films exhibited high saturation magnetization value of ~ 82 emu/g, relatively low coercivity value of 19.5 Oe and remanent magnetization of 1.17%. Irrespective of the alloying of diamagnetic Zn and Cu with ferromagnetic Fe, Co, Ni elements, the HEA thin film has resulted in relatively high saturation magnetization which can provide useful insights for its potential unexplored applications.


Sign in / Sign up

Export Citation Format

Share Document