Applying the Tilt-depth and Tilt-Euler techniques of gravity data to decipher the basement depth in Sichuan Basin, China

2021 ◽  
Author(s):  
Qing Chen ◽  
Yunpeng Dong ◽  
Xianfeng Tan ◽  
Jiabei Wang ◽  
Xiaoyu Huang ◽  
...  
2021 ◽  
Author(s):  
Komal Rani

<p>Gadag schist belt, India is known for sulphide-gold mineralization. In the study area mineralization is controlled structurally and lithologically. In this context, Airborne Visible-Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) Visible Near InfraRed (VNIR) - Shortwave Infrared (SWIR) bands were utilized to derive alteration zones and structures present in the study area. Lithological boundaries have also been updated using AVIRIS-NG VNIR-SWIR bands derived images enhancement products i.e. Minimum Noise Fraction (MNF) and False Colour Composite (FCC). Further, image spectra of alteration zones (Hydrous mineral etc.) derived from AVIRIS-NG calibrated VNIR-SWIR bands were compared with the standard corresponding reference library spectra (USGS, JPL spectral library). These image spectra have been utilized to demarcate the alteration zones using the Matched Filtering spectral mapping method. Structures were demarcated using high pass (HP) filtered image and FCC images. Low pass (LP) filter image and along with MNF & FCC image composite were utilized to update the lithological boundaries in the study area.</p><p>Ground gravity data has also been processed to derive the subsurface evidences relevant to the deposit in the present study area. Subsurface structures which are responsible for the transportation of mineral rich fluid in the near subsurface are delineated using the gravity data derived products. Apart from this, basement depths are also derived from the gravity data which are being utilized for the validation as well as to further precise the locations of mineral deposits.  These subsurface structures (gravity data), lithology, lineament density and alteration zones are very important evidential layers which have been integrated using fuzzy logic integration techniques to identify potential zones of gold-sulphide mineralization in the present study area. The prospective zones are validated using the secondary data and basement depth derived from the gravity data.</p><p>For similar kind of gold-sulphide mineralization, AVIRIS-NG data and Gravity data can be used to derive the important evidential layers in any part of the world. There are only few studies where such integration approach has been utilized to explore new potential zones of gold sulphide mineralization. </p><p>Keywords: AVIRIS-NG, VNIR-SWIR, alteration, MNF, FCC, Gravity, Basement Depth</p>


2015 ◽  
Vol 33 (1) ◽  
pp. 29
Author(s):  
Renata Constantino ◽  
Eder Cassola Molina

ABSTRACT. This paper estimated the basement depth of the Santos Basin region, S˜ao Paulo State, Brazil, combining gravity data obtained from satellite altimetry and marine gravimetry, bathymetric data and sediment thickness from international data banks, and crustal thickness data available in the region. The first step consisted of calculating the gravity effect of sediments in Santos Basin, and the Crustal Mantle Interface (CMI) was modeled from constrained gravity inversion. Subsequently, the reliability of the models obtained was tested by flexural analysis with satisfactory results, as the flexural and gravimetric CMIs showed good agreement. The gravity effect of flexural CMI and the gravity effect of sediments were then calculated and subtracted from the original Bouguer anomaly. The residual field thus obtained, which is assumed to represent the topographical features of the basement, was inverted in the last step of the work, providing information that shows a basement with features of up to 700 m that appear to be in agreement with tectonic features previous discussed, such as the Avedis volcanic chain. The basement depth estimated during this study showed depths ranging from 1,500 to 10,500 m, and the deepest region is consistent with the Cabo Frio Fault. The methodology used in the study showed that from a combined data analysis, it is possible to obtain a three-dimensional model of the basement in ocean areas. This non-seismic approach can be advantageous in terms of efficiency and cost. The knowledge of the basement can offer important insights for the development of genetic and tectonic models of exploratory interest in the region.Keywords: basement, Santos Basin, gravity. RESUMO. Este trabalho visa estimar a profundidade do embasamento na região da Bacia de Santos por meio de uma análise combinada de dados gravimétricos obtidos a partir de altimetria por satélite e gravimetria marinha, com dados batimétricos e modelos de espessura sedimentar provenientes de bancos de dados internacionais e dados de espessura crustal disponíveis na região. Na primeira etapa do trabalho foi calculado o efeito do pacote sedimentar no sinal gravimétrico na Bacia de Santos, como também foi modelada a profundidade da Interface Crosta Manto (ICM) a partir de inversão gravimétrica com vínculos. Na etapa seguinte, a confiabilidade dos modelos obtidos foi testada através de an´álise flexural e o resultado foi satisfatório, mostrando que a ICM flexural e a ICM gravimétrica estão em concordância. Prosseguindo para etapa seguinte, o efeito gravimétrico da ICM encontrada por análise flexural e o efeito gravimétrico dos sedimentos foram então calculados e subtraídos da anomalia Bouguer original. O campo residual assim obtido, que se admite representar as feições topográficas do embasamento, foi invertido na última etapa do trabalho, fornecendo informações que mostram um embasamento com feições topográficas de até 700 m, que parecem estar em concordância com feições tectônicas discutidas em trabalhos pretéritos, como por exemplo a cadeia vulcânica Avedis. A profundidade do embasamento estimada durante este trabalho mostrou profundidades que vão desde 1.500 a 10.500 m, sendo que a região mais profunda corresponde à falha de Cabo Frio. Este trabalho demonstrou que, a partir de uma análise combinada de dados, é possível obter um modelo tridimensional do embasamento. O método, por ser não sísmico, pode ser vantajoso em questões de eficiência. O conhecimento deste embasamento é crucial na identificação de feições tectônicas, enquanto as informações sobre sua profundidade e topografia podem oferecer importantes subsídios para a elaboração de modelos genéticos e tectônicos de interesse exploratório na região.Palavras-chave: embasamento, Bacia de Santos, gravimetria.


Geophysics ◽  
1962 ◽  
Vol 27 (1) ◽  
pp. 162-162
Author(s):  
G. Ramaswamy

Mr. Jacobsen’s article and the accompanying discussions on the scope and outlook for the current interpretational practices in aeromagnetic surveys are very timely and deserve the attention of all geophysicists as well as exploration management. Since World War II the aeromagnetic surveys have replaced the ground magnetic surveys as a reconnaissance exploration tool chiefly because of the former’s rapidity and cheapness in data‐gathering. In this process, however, the aerial technique has lost one advantage going with the ground surveys. In land surveys the practice has been to make simultaneous magnetic and gravity observations and the interpretations of basement features are made from these paired observations. I believe that the absence of concurrent information on gravity has been a real handicap with aeromagnetic interpretation in reliably locating basement features in the early stages of exploration. Perhaps the present aerial gravitymeter instrumentation can be soon improved to desired sensitivity for exploration so that simultaneous gravity‐magnetic observations from the air will be possible. In large unexplored sedimentary areas the gravity data are as valuable, sometimes more, to the interpretation of magnetic data as a knowledge of the magnetic properties of any out‐cropping rocks.


2020 ◽  
Vol 50 (3) ◽  
pp. 303-323
Author(s):  
Soudeh LONI ◽  
Mahmoud MEHRAMUZ

In this paper, for the first time an Improved Particle Swarm Optimization (IPSO) algorithm, is developed to evaluate the 2.5-D basement of sedimentary basin and consequently to simulate its bottom, by using the density contrast that varies parabolically with depth simultaneously. The IPSO method is capable of improving the global search of particles in all of the search fields. Finding the optimum solution is adjusted by an inertia weight and acceleration coefficients. Here, we have examined the ability of the IPSO inversion by the synthetic gravity data due to a sedimentary basin, with and without noise. The calculated depth and gravity of the synthetic model do not differ too much from assumed values due to set limits for model parameters and are always within the range. Also, the mentioned method has been applied for the 2.5-D gravity inverse modelling of a sedimentary basin in Iran. We also have modelled the sedimentary basin in 2-D along seven profiles. Furthermore, using the depth values estimated by IPSO from all profiles, a 3-D model of the sedimentary basin was generated. The obtained maximum depth for this sedimentary basin is 2.62 km.


2016 ◽  
Vol 56 (2) ◽  
pp. 597 ◽  
Author(s):  
Abbas Babaahmadi ◽  
Renate Sliwa ◽  
Joan Esterle

The Hutton-Wallumbilla (HWF), Merivale (MF), Kia Ora, and Injune faults are the major structures in the western Surat Basin, deforming Palaeozoic to Jurassic rock units. The authors present results from the interpretation of gridded gravity data and open-file seismic reflection data, which provide constraints on the geometry and kinematics of these faults. The interpretation of gravity data indicates that the HWF and MF are expressed by sharp lineaments in moderate to high-amplitude anomalies, indicating a deep-seated nature of the faults. The interpretation of seismic lines shows that the HWF and MF are northeast-dipping and east-dipping reverse blind faults, respectively. Some other faults also displaced and folded the rock units of the Bowen and Surat basins, such as the Kia Ora and Injune faults. The MF, Kia Ora, and the northern part of the HWF acted as normal faults during the early Permian and then have been inverted during the Late Permian–Triassic Hunter-Bowen Orogeny phases, especially during the early Late Triassic. The largest fault throws in the Bowen Basin successions are observed along the southern part of the HWF and its central splay, which are around 350 m and 480 m, respectively. The stratigraphic units of the Surat Basin above it have gently been folded over the major blind faults. The largest amount of shortening in the Surat Basin has taken place over the southern part of the HWF by 0.5%. The basement depth played an important role in the amount of contractional deformation in the Bowen and Surat basins. Where the basement is shallow, the amount of deformation along the faults in both the Bowen and Surat basins is higher.


2021 ◽  
Vol 54 (2D) ◽  
pp. 113-124
Author(s):  
Ali M. Al-Rahim

Tectonic depression area within and/or beside widespread basin is regarded as an important location for sub-basin sedimentary sequence of Iraq which may represent an excellent accumulation of bounded sediments. Al-Ma'aniyah depression, southwest Iraq is one of such type of sub-basin. Free-air gravity data show a NS extend of this depression inside Saudi Arabia. This work focuses on studying and multi-2.5D model creation for the depression in the Iraqi territory part using Bouguer gravity data and mapping its basement relief. Firstly, the exact boundary of the depression was outlined utilizing the Free-Air gravity data. Then, a precise selection of regional field for the study area was determined by using the power spectrum method, which accordingly defines the residual anomalies that could represent structural enclosures. Many positive anomalies were assigned and enhanced using vertical and total horizontal derivatives, where they were interpreted as basement-related features. Subsequently, a 2.5D multi modeling and depth inversion for the Bouguer gravity data were accomplished by converting the gravity map to a stacked profiles depth map. A nineteen gravity profiles, which cover the study area, were modeled by assuming 2D intra-sedimentary bodies. These bodies were best presented by a 3D view that clarifies the nature of the subsurface modeled structures. The modeling shows an extra density at the northern part of the depression, in contrast, it suggests low density bodies at its southern part, the case that appears inconsistent with a previously performed magnetic interpretation. The inversion of gravity data shows that the basement depth at Al-Ma'aniyah depression ranges from 7.5 to10 km.


Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1704-1714 ◽  
Author(s):  
Allan Spector ◽  
Thomas L. Lawler

Aeromagnetic, ground magnetic, and gravity data, together with all available drillhole data and physical property measurements, were used to map the Precambrian geology of an area in Minnesota that is virtually devoid of outcrop. The work was done for purposes of land use planning and to encourage minerals exploration and mostly consisted of the analysis of profiles of aeromagnetic data to map magnetic/lithologic contacts, to infer structure, and to determine thickness of overburden cover. Two greenstone belts were resolved. They comprise higher density rocks separated by nonmagnetic metasedimentary intervals. The belts are deformed into synclinal structures that, according to modeling, range from 1 km to as much as 5 km in depth. Lithologic predictions were confirmed in five out of six holes drilled on completion of the magnetic interpretation. In over 40% of the area, Precambrian rocks are apparently mantled by less than 50 m of overburden, and in 50% of the area there is between 50 and 100 m of overburden cover. In the remaining 10%, the magnetic basement is overlain by a thick blanket of nonmagnetic Precambrian sedimentary rocks, over 200 m thick. Basement depth determinations were subsequently tested at six holes. Depth determinations at all drill sites were found to lie within the 20% error expectation of the method of depth determination. Thirty‐seven sites were resolved from the aeromagnetic data as targets for basemetal sulfide (copper, zinc) as well as precious metal (gold) mineralization. Thirteen magnetic anomalies were identified as possible kimberlite pipes.


Sign in / Sign up

Export Citation Format

Share Document