Fast mapping of magnetic basement depth, structure and nature using aeromagnetic and gravity data: combined methods and their application in the Paris Basin

2013 ◽  
Vol 61 (4) ◽  
pp. 857-873 ◽  
Author(s):  
G. Martelet ◽  
J. Perrin ◽  
C. Truffert ◽  
J. Deparis
Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1704-1714 ◽  
Author(s):  
Allan Spector ◽  
Thomas L. Lawler

Aeromagnetic, ground magnetic, and gravity data, together with all available drillhole data and physical property measurements, were used to map the Precambrian geology of an area in Minnesota that is virtually devoid of outcrop. The work was done for purposes of land use planning and to encourage minerals exploration and mostly consisted of the analysis of profiles of aeromagnetic data to map magnetic/lithologic contacts, to infer structure, and to determine thickness of overburden cover. Two greenstone belts were resolved. They comprise higher density rocks separated by nonmagnetic metasedimentary intervals. The belts are deformed into synclinal structures that, according to modeling, range from 1 km to as much as 5 km in depth. Lithologic predictions were confirmed in five out of six holes drilled on completion of the magnetic interpretation. In over 40% of the area, Precambrian rocks are apparently mantled by less than 50 m of overburden, and in 50% of the area there is between 50 and 100 m of overburden cover. In the remaining 10%, the magnetic basement is overlain by a thick blanket of nonmagnetic Precambrian sedimentary rocks, over 200 m thick. Basement depth determinations were subsequently tested at six holes. Depth determinations at all drill sites were found to lie within the 20% error expectation of the method of depth determination. Thirty‐seven sites were resolved from the aeromagnetic data as targets for basemetal sulfide (copper, zinc) as well as precious metal (gold) mineralization. Thirteen magnetic anomalies were identified as possible kimberlite pipes.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Abdelhakim S. Eshanibli ◽  
Abel Uyimwen Osagie ◽  
Nur Azwin Ismail ◽  
Hussin B. Ghanush

AbstractIn this study, we analyse both ground gravity and aeromagnetic data in order to delineate structural trends, fault systems and deduce sedimentary thicknesses within the Ajdabiya Trough in Libya’s northeast. A high-pass filter and a reduced-to-the-pole (RTP) transformation are applied to the gravity and aeromagnetic data respectively. Different filters are used to enhance the structural signatures and fault trends within the study area. The Werner deconvolution and source parameter imaging (SPI) techniques are applied to the RTP magnetic data for source depth estimation. Four well-data within the area are used as constraints in the two-dimensional forward modelling process. The results show that the Ajdabiya Trough is characterised by gravity anomaly highs and magnetic anomaly lows. The analysis of gravity data shows predominant Northeast–Southwest structural trends, whereas the analysis of magnetic data shows predominant North–South magnetic lineaments within the Ajdabiya Trough. The Euler deconvolution depth estimates of faults depths range between 1500 and 9500 m. The SPI estimates of the magnetic basement range between 2500 and 11,500 m beneath the study area (deepest beneath the Ajdabiya Trough). Constrained by the well-data, six major layers characterize the four profiles that are taken within the area. One of the profiles shows a high-density intrusion (about 4 km from the surface) within the sedimentary sequence. The intrusion may be the result of the rifting Sirt Basin which caused a weakening of the crust to allow for mantle intrusion.


2021 ◽  
Author(s):  
Komal Rani

<p>Gadag schist belt, India is known for sulphide-gold mineralization. In the study area mineralization is controlled structurally and lithologically. In this context, Airborne Visible-Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) Visible Near InfraRed (VNIR) - Shortwave Infrared (SWIR) bands were utilized to derive alteration zones and structures present in the study area. Lithological boundaries have also been updated using AVIRIS-NG VNIR-SWIR bands derived images enhancement products i.e. Minimum Noise Fraction (MNF) and False Colour Composite (FCC). Further, image spectra of alteration zones (Hydrous mineral etc.) derived from AVIRIS-NG calibrated VNIR-SWIR bands were compared with the standard corresponding reference library spectra (USGS, JPL spectral library). These image spectra have been utilized to demarcate the alteration zones using the Matched Filtering spectral mapping method. Structures were demarcated using high pass (HP) filtered image and FCC images. Low pass (LP) filter image and along with MNF & FCC image composite were utilized to update the lithological boundaries in the study area.</p><p>Ground gravity data has also been processed to derive the subsurface evidences relevant to the deposit in the present study area. Subsurface structures which are responsible for the transportation of mineral rich fluid in the near subsurface are delineated using the gravity data derived products. Apart from this, basement depths are also derived from the gravity data which are being utilized for the validation as well as to further precise the locations of mineral deposits.  These subsurface structures (gravity data), lithology, lineament density and alteration zones are very important evidential layers which have been integrated using fuzzy logic integration techniques to identify potential zones of gold-sulphide mineralization in the present study area. The prospective zones are validated using the secondary data and basement depth derived from the gravity data.</p><p>For similar kind of gold-sulphide mineralization, AVIRIS-NG data and Gravity data can be used to derive the important evidential layers in any part of the world. There are only few studies where such integration approach has been utilized to explore new potential zones of gold sulphide mineralization. </p><p>Keywords: AVIRIS-NG, VNIR-SWIR, alteration, MNF, FCC, Gravity, Basement Depth</p>


2015 ◽  
Vol 33 (1) ◽  
pp. 29
Author(s):  
Renata Constantino ◽  
Eder Cassola Molina

ABSTRACT. This paper estimated the basement depth of the Santos Basin region, S˜ao Paulo State, Brazil, combining gravity data obtained from satellite altimetry and marine gravimetry, bathymetric data and sediment thickness from international data banks, and crustal thickness data available in the region. The first step consisted of calculating the gravity effect of sediments in Santos Basin, and the Crustal Mantle Interface (CMI) was modeled from constrained gravity inversion. Subsequently, the reliability of the models obtained was tested by flexural analysis with satisfactory results, as the flexural and gravimetric CMIs showed good agreement. The gravity effect of flexural CMI and the gravity effect of sediments were then calculated and subtracted from the original Bouguer anomaly. The residual field thus obtained, which is assumed to represent the topographical features of the basement, was inverted in the last step of the work, providing information that shows a basement with features of up to 700 m that appear to be in agreement with tectonic features previous discussed, such as the Avedis volcanic chain. The basement depth estimated during this study showed depths ranging from 1,500 to 10,500 m, and the deepest region is consistent with the Cabo Frio Fault. The methodology used in the study showed that from a combined data analysis, it is possible to obtain a three-dimensional model of the basement in ocean areas. This non-seismic approach can be advantageous in terms of efficiency and cost. The knowledge of the basement can offer important insights for the development of genetic and tectonic models of exploratory interest in the region.Keywords: basement, Santos Basin, gravity. RESUMO. Este trabalho visa estimar a profundidade do embasamento na região da Bacia de Santos por meio de uma análise combinada de dados gravimétricos obtidos a partir de altimetria por satélite e gravimetria marinha, com dados batimétricos e modelos de espessura sedimentar provenientes de bancos de dados internacionais e dados de espessura crustal disponíveis na região. Na primeira etapa do trabalho foi calculado o efeito do pacote sedimentar no sinal gravimétrico na Bacia de Santos, como também foi modelada a profundidade da Interface Crosta Manto (ICM) a partir de inversão gravimétrica com vínculos. Na etapa seguinte, a confiabilidade dos modelos obtidos foi testada através de an´álise flexural e o resultado foi satisfatório, mostrando que a ICM flexural e a ICM gravimétrica estão em concordância. Prosseguindo para etapa seguinte, o efeito gravimétrico da ICM encontrada por análise flexural e o efeito gravimétrico dos sedimentos foram então calculados e subtraídos da anomalia Bouguer original. O campo residual assim obtido, que se admite representar as feições topográficas do embasamento, foi invertido na última etapa do trabalho, fornecendo informações que mostram um embasamento com feições topográficas de até 700 m, que parecem estar em concordância com feições tectônicas discutidas em trabalhos pretéritos, como por exemplo a cadeia vulcânica Avedis. A profundidade do embasamento estimada durante este trabalho mostrou profundidades que vão desde 1.500 a 10.500 m, sendo que a região mais profunda corresponde à falha de Cabo Frio. Este trabalho demonstrou que, a partir de uma análise combinada de dados, é possível obter um modelo tridimensional do embasamento. O método, por ser não sísmico, pode ser vantajoso em questões de eficiência. O conhecimento deste embasamento é crucial na identificação de feições tectônicas, enquanto as informações sobre sua profundidade e topografia podem oferecer importantes subsídios para a elaboração de modelos genéticos e tectônicos de interesse exploratório na região.Palavras-chave: embasamento, Bacia de Santos, gravimetria.


Geophysics ◽  
1962 ◽  
Vol 27 (1) ◽  
pp. 162-162
Author(s):  
G. Ramaswamy

Mr. Jacobsen’s article and the accompanying discussions on the scope and outlook for the current interpretational practices in aeromagnetic surveys are very timely and deserve the attention of all geophysicists as well as exploration management. Since World War II the aeromagnetic surveys have replaced the ground magnetic surveys as a reconnaissance exploration tool chiefly because of the former’s rapidity and cheapness in data‐gathering. In this process, however, the aerial technique has lost one advantage going with the ground surveys. In land surveys the practice has been to make simultaneous magnetic and gravity observations and the interpretations of basement features are made from these paired observations. I believe that the absence of concurrent information on gravity has been a real handicap with aeromagnetic interpretation in reliably locating basement features in the early stages of exploration. Perhaps the present aerial gravitymeter instrumentation can be soon improved to desired sensitivity for exploration so that simultaneous gravity‐magnetic observations from the air will be possible. In large unexplored sedimentary areas the gravity data are as valuable, sometimes more, to the interpretation of magnetic data as a knowledge of the magnetic properties of any out‐cropping rocks.


Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 502
Author(s):  
Carole Petit ◽  
Louis de Barros ◽  
Guillaume Duclaux ◽  
Yves Mazabraud

Comparing nearby areas with contrasted seismicity distributions like the French Variscan Armorican Massif (AM) and the surrounding intracratonic Paris Basin (PB) can help deciphering which parameters control the occurrence or absence of diffuse, intraplate seismicity. In this paper, we examine how lithosphere temperature, fluid pressure, and frictional strength variations, combined with horizontal and bending stresses, may condition brittle, ductile or elastic behaviours of the crust in the AM and PB. We compute yield stress envelopes (YSE) and lithospheric flexure across a 1000 km-long SW–NE profile crossing the AM and PB approximately parallel to the direction of the minimum horizontal stress. Flexural models slightly better fit measured Bouguer gravity data if we apply two vertical loads on the AM and PB, with values (positive downward) ranging between −3 and −2.1012, and between 4 and 6.1012 N·m−2, respectively, depending on the chosen crustal composition. Our results evidence that whatever the crustal composition, bending stresses and heat flow variations alone are not sufficient to explain the difference in seismogenic behaviour between the AM and the PB. Variations in friction coefficient, in the range of standard values, are not totally satisfying either, since they do not restrain the brittle crustal thickness in the PB to less than 10 km, which is still large enough to be the locus of shallow earthquakes. Oppositely, increasing the cohesion from 10 to 80 MPa has a stronger effect on the thickness of the brittle upper crust, decreasing it from 10 to 15 km beneath the AM to 0–5 km beneath the PB. This suggests that the Mesozoic sedimentary pile can act as a sticky layer holding together basement rocks of the PB, which is equivalent to an increase in cohesion, and protects them from failure.


Sign in / Sign up

Export Citation Format

Share Document