A dynamic model for exploring water-resource management scenarios in an inland arid area: Shanshan County, Northwestern China

2017 ◽  
Vol 14 (6) ◽  
pp. 1039-1057 ◽  
Author(s):  
Chao Chen ◽  
Sajjad Ahmad ◽  
Ajay Kalra ◽  
Zhi-xia Xu
2020 ◽  
Vol 12 (7) ◽  
pp. 1121 ◽  
Author(s):  
Yaokui Cui ◽  
Shihao Ma ◽  
Zhaoyuan Yao ◽  
Xi Chen ◽  
Zengliang Luo ◽  
...  

Temporally continuous daily actual evapotranspiration (ET) data play a critical role in water resource management in arid areas. As a typical remotely sensed land surface temperature (LST)-based ET model, the surface temperature-vegetation index (Ts-VI) triangle model provides direct monitoring of ET, but these estimates are temporally discontinuous due to cloud contamination. In this work, we present a gap-filling algorithm (TSVI_DNN) using a deep neural network (DNN) with the Ts-VI triangle model to obtain temporally continuous daily actual ET at regional scale. The TSVI_DNN model is evaluated against in situ measurements in an arid area of China during 2009–2011 and shows good agreement with eddy covariance (EC) observations. The temporal coverage was improved from 16.1% with the original Ts-VI tringle model to 67.1% with the TSVI_DNN model. The correlation coefficient (R), root mean square error (RMSE), bias, and mean absolute difference (MAD) are 0.9, 0.86 mm d−1, −0.16 mm d−1, and 0.65 mm d−1, respectively. When compared with the National Aeronautics and Space Administration (NASA) official MOD16 version 6 ET product, estimates of ET using TSVI_DNN are improved by approximately 49.2%. The method presented here can potentially contribute to enhanced water resource management in arid areas, especially under climate change.


Waterlines ◽  
1997 ◽  
Vol 16 (1) ◽  
pp. 23-25
Author(s):  
Barry Lloyd ◽  
Teresa Thorpe

1987 ◽  
Vol 19 (9) ◽  
pp. 97-106
Author(s):  
J. J. Vasconcelos

Hater resource managers in semi-arid regions are faced with some unique problems. The wide variations in precipitation and stream flows in semi-arid regions increase man's dependence on the ground water resource for an ample and reliable supply of water. Proper management of the ground water resource is absolutely essential to the economic well being of semi-arid regions. Historians have discovered the remains of vanished advanced civilizations based on irrigated agriculture which were ignorant of the importance of proper ground water resource management. In the United States a great deal of effort is presently being expended in the study and control of toxic discharges to the ground water resource. What many public policy makers fail to understand is that the potential loss to society resulting from the mineralization of the ground water resource is potentially much greater than the loss caused by toxic wastes discharges, particularly in developing countries. Appropriations for ground water resource management studies in developed countries such as the United States are presently much less than those for toxic wastes management and should be increased. It is the reponsibility of the water resource professional to emphasize to public policy makers the importance of ground water resource management. Applications of ground water resource management models in the semi-arid Central Valley of California are presented. The results demonstrate the need for proper ground water resource management practices in semi-arid regions and the use of ground water management models as a valuable tool for the water resource manager.


Sign in / Sign up

Export Citation Format

Share Document