Behavior of Vaneless Diffuser Stall in a Centrifugal Compressor

2022 ◽  
Vol 31 (1) ◽  
pp. 3-12
Author(s):  
Yuki Agari ◽  
Yoshifumi Yamao ◽  
Nobumichi Fujisawa ◽  
Yutaka Ohta
Author(s):  
Leandro Oliveira Salviano ◽  
Elóy Esteves Gasparin ◽  
Vitor Cesar N. Mattos ◽  
Bruno Barbizan ◽  
Fábio Saltara ◽  
...  

Author(s):  
Zitian Niu ◽  
Zhenzhong Sun ◽  
Baotong Wang ◽  
Xinqian Zheng

Abstract Rotating stall is an important unstable flow phenomenon that leads to performance degradation and limits the stability boundary in centrifugal compressors. The volute is one of the sources to induce the non-axisymmetric flow in a centrifugal compressor, which has an important effect on the performance of compressors. However, the influence of volute on rotating stall is not clear. Therefore, the effects of volute on rotating stall by experimental and numerical simulation have been explored in this paper. It’s shown that one rotating stall cell generates in a specific location and disappears in another specific location of the vaneless diffuser as a result of the distorted flow field caused by the volute. Also, the cells cannot stably rotate in a whole circle. The frequency related to rotating stall captured in the experiment is 43.9% of the impeller passing frequency (IPF), while it is 44.7% of IPF captured by three-dimensional unsteady numerical simulation, which proves the accuracy of the numerical method in this study. The numerical simulation further reveals that the stall cell initialized in a specific location can be split into several cells during the evolution process. The reason for this is that the blockage in the vaneless diffuser induced by rotating stall is weakened by the mainstream from the impeller exit to make one initialized cell disperse into several ones. The volute has an important influence on the generation and evolution process of the rotating stall cells of compressors. By optimizing volute geometry to reduce the distortion of the flow field, it is expected that rotating stall can be weakened or suppressed, which is helpful to widen the operating range of centrifugal compressors.


Author(s):  
Kiyotaka Hiradate ◽  
Hiromi Kobayashi ◽  
Takahiro Nishioka

This study experimentally and numerically investigates the effect of application of curvilinear element blades to fully-shrouded centrifugal compressor impeller on the performance of centrifugal compressor stage. Design suction flow coefficient of compressor stage investigated in this study is 0.125. The design guidelines for the curvilinear element blades which had been previously developed was applied to line element blades of a reference conventional impeller and a new centrifugal compressor impeller with curvilinear element blades was designed. Numerical calculations and performance tests of two centrifugal compressor stages with the conventional impeller and the new one were conducted to investigate the effectiveness of application of the curvilinear element blades and compare the inner flowfield in details. Despite 0.5% deterioration of the impeller efficiency, it was confirmed from the performance test results that the compressor stage with the new impeller achieved 1.7% higher stage efficiency at the design point than that with the conventional one. Moreover, it was confirmed that the compressor stage with the new impeller achieved almost the same off-design performance as that of the conventional stage. From results of the numerical calculations and the experiments, it is considered that this efficiency improvement of the new stage was achieved by suppression of the secondary flows in the impeller due to application of negative tangential lean. The suppression of the secondary flows in the impeller achieved uniformalized flow distribution at the impeller outlet and increased the static pressure recovery coefficient in the vaneless diffuser. As a result, it is thought that the total pressure loss was reduced downstream of the vaneless diffuser outlet in the new stage.


Author(s):  
T M A Maksoud ◽  
M W Johnson

Distributions of normal and shear (Reynolds) stresses inside the vaneless diffuser of a low-speed centrifugal compressor are presented. The measurements were made using a triple hot-wire system and a phase lock loop sampling technique. Results were obtained on cross-sectional planes at eight radial stations between the impeller outlet and the diffuser exit at three different flowrates. The turbulence was highly anisotropic and became more so as the flowrate was increased. The tangential component of turbulent intensity was found to be significantly smaller than either the radial or axial component. The blade wake observed at the diffuser inlet decays very rapidly due to the strong tangential Reynolds stresses generated by the opposed secondary flows on either side of the wake. The passage wake decays very much more slowly and is still identifiable at the diffuser discharge.


Author(s):  
Chuang Gao ◽  
Weiguang Huang ◽  
Haiqing Liu ◽  
Hongwu Zhang ◽  
Jundang Shi

This paper concerns with the numerical and experimental aspects of both steady and unsteady flow behavior in a centrifugal compressor with vaneless diffuser and downstream collector. Specifically, the appearance of flow instabilities i.e., rotating stall and surge is investigated in great detail. As the first step, the static performance of both stage and component was analyzed and possible root cause of system surge was put forward based on the classic stability theory. Then the unsteady pressure data was utilized to find rotating stall and surge in frequency domain which could be classified as mild surge and deep surge. With the circumferentially installed transducers at impeller inlet, backward travelling waves during stall ramp could be observed. The modes of stall waves could be clearly identified which is caused by impeller leading edge flow recirculation at Mu = 0.96. However, for the unstable flow at Mu = 1.08, the system instability seems to be caused by reversal flow in vaneless diffuser where the pressure oscillation was strongest. Thus steady numerical simulation were performed and validated with the experimental performance data. With the help of numerical analysis, the conjectures are proved.


Sign in / Sign up

Export Citation Format

Share Document