scholarly journals A concept of dynamically reconfigurable real-time vision system for autonomous mobile robotics

2008 ◽  
Vol 5 (2) ◽  
pp. 174-184 ◽  
Author(s):  
Aymeric De Cabrol ◽  
Thibault Garcia ◽  
Patrick Bonnin ◽  
Maryline Chetto
2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Michael Johnson ◽  
Martin Hayes

AbstractThis paper considers the design, construction and validation of a low-cost experimental robotic testbed, which allows for the localisation and tracking of multiple robotic agents in real time. The testbed system is suitable for research and education in a range of different mobile robotic applications, for validating theoretical as well as practical research work in the field of digital control, mobile robotics, graphical programming and video tracking systems. It provides a reconfigurable floor space for mobile robotic agents to operate within, while tracking the position of multiple agents in real-time using the overhead vision system. The overall system provides a highly cost-effective solution to the topical problem of providing students with practical robotics experience within severe budget constraints. Several problems encountered in the design and development of the mobile robotic testbed and associated tracking system, such as radial lens distortion and the selection of robot identifier templates are clearly addressed. The testbed performance is quantified and several experiments involving LEGO Mindstorm NXT and Merlin System MiaBot robots are discussed.


2005 ◽  
Author(s):  
Huan Li ◽  
John Sweeney ◽  
Krithi Ramamritham ◽  
Roderic Grupen ◽  
Prashant Shenoy
Keyword(s):  

Author(s):  
Giuseppe Placidi ◽  
Danilo Avola ◽  
Luigi Cinque ◽  
Matteo Polsinelli ◽  
Eleni Theodoridou ◽  
...  

AbstractVirtual Glove (VG) is a low-cost computer vision system that utilizes two orthogonal LEAP motion sensors to provide detailed 4D hand tracking in real–time. VG can find many applications in the field of human-system interaction, such as remote control of machines or tele-rehabilitation. An innovative and efficient data-integration strategy, based on the velocity calculation, for selecting data from one of the LEAPs at each time, is proposed for VG. The position of each joint of the hand model, when obscured to a LEAP, is guessed and tends to flicker. Since VG uses two LEAP sensors, two spatial representations are available each moment for each joint: the method consists of the selection of the one with the lower velocity at each time instant. Choosing the smoother trajectory leads to VG stabilization and precision optimization, reduces occlusions (parts of the hand or handling objects obscuring other hand parts) and/or, when both sensors are seeing the same joint, reduces the number of outliers produced by hardware instabilities. The strategy is experimentally evaluated, in terms of reduction of outliers with respect to a previously used data selection strategy on VG, and results are reported and discussed. In the future, an objective test set has to be imagined, designed, and realized, also with the help of an external precise positioning equipment, to allow also quantitative and objective evaluation of the gain in precision and, maybe, of the intrinsic limitations of the proposed strategy. Moreover, advanced Artificial Intelligence-based (AI-based) real-time data integration strategies, specific for VG, will be designed and tested on the resulting dataset.


2005 ◽  
Vol 56 (8-9) ◽  
pp. 831-842 ◽  
Author(s):  
Monica Carfagni ◽  
Rocco Furferi ◽  
Lapo Governi

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 89694-89698
Author(s):  
Aysegul Ucar ◽  
Jessy W. Grizzle ◽  
Maani Ghaffari ◽  
Mattias Wahde ◽  
H. Levent Akin ◽  
...  

Author(s):  
Giovanni Taverriti ◽  
Stefano Lombini ◽  
Lorenzo Seidenari ◽  
Marco Bertini ◽  
Alberto Del Bimbo

2006 ◽  
Vol 89 (6) ◽  
pp. 34-43 ◽  
Author(s):  
Shingo Kagami ◽  
Takashi Komuro ◽  
Yoshihiro Watanabe ◽  
Masatoshi Ishikawa
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document