Hybrid function projective synchronization of chaotic systems with uncertain time-varying parameters via Fourier series expansion

2012 ◽  
Vol 9 (4) ◽  
pp. 388-394 ◽  
Author(s):  
Chun-Li Zhang ◽  
Jun-Min Li
2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Jinsheng Xing

The adaptive hybrid function projective synchronization (AHFPS) of different chaotic systems with unknown time-varying parameters is investigated. Based on the Lyapunov stability theory and adaptive bounding technique, the robust adaptive control law and the parameters update law are derived to make the states of two different chaotic systems asymptotically synchronized. In the control strategy, the parameters need not be known throughly if the time-varying parameters are bounded by the product of a known function oftand an unknown constant. In order to avoid the switching in the control signal, a modified robust adaptive synchronization approach with the leakage-like adaptation law is also proposed to guarantee the ultimately uni-formly boundedness (UUB) of synchronization errors. The schemes are successfully applied to the hybrid function projective synchronization between the Chen system and the Lorenz system and between hyperchaotic Chen system and generalized Lorenz system. Moreover, numerical simulation results are presented to verify the effectiveness of the proposed scheme.


2015 ◽  
Vol 9 (6) ◽  
pp. 568
Author(s):  
Ahmad Al-Jarrah ◽  
Mohammad Ababneh ◽  
Suleiman Bani Hani ◽  
Khalid Al-Widyan

2009 ◽  
Vol 20 (05) ◽  
pp. 789-797
Author(s):  
YONG-GUANG YU ◽  
HAN-XIONG LI ◽  
JUN-ZHI YU

This paper mainly investigated a hybrid function projective synchronization of two different chaotic systems. Based on the Lyapunov stability theory, an adaptive controller for the synchronization of two different chaotic systems is designed. This technique is applied to achieve the synchronization between Lorenz and Rössler chaotic systems, and the synchronization of hyperchaotic Rössler and Chen systems. The numerical simulation results illustrate the effectiveness and feasibility of the proposed scheme.


2011 ◽  
Vol 2011 ◽  
pp. 1-15
Author(s):  
Ping Zhou ◽  
Xiao-You Yang

An adaptive hybrid function projective synchronization (AHFPS) scheme between different fractional-order chaotic systems with uncertain system parameter is addressed in this paper. In this proposed scheme, the drive and response system could be synchronized up to a vector function factor. This proposed scheme is different with the function projective synchronization (FPS) scheme, in which the drive and response system could be synchronized up to a scaling function factor. The adaptive controller and the parameter update law are gained. Two examples are presented to demonstrate the effectiveness of the proposed scheme.


2019 ◽  
Vol 18 (1) ◽  
pp. 112-128
Author(s):  
Jinsheng Xing

In this paper, an adaptive learning control approach is presented for the hybrid functional projective synchronization (HFPS) of different chaotic systems with fully unknown periodical time-varying parameters. Differential-difference hybrid parametric learning laws and an adaptive learning control law are constructed via the Lyapunov–Krasovskii functional stability theory, which make the states of two different chaotic systems asymptotically synchronized in the sense of mean square norm. Moreover, the boundedness of the parameter estimates are also obtained. The Lorenz system and Chen system are illustrated to show the effectiveness of the hybrid functional projective synchronization scheme.


Sign in / Sign up

Export Citation Format

Share Document