scholarly journals Advances in Deep Learning Methods for Visual Tracking: Literature Review and Fundamentals

Author(s):  
Xiao-Qin Zhang ◽  
Run-Hua Jiang ◽  
Chen-Xiang Fan ◽  
Tian-Yu Tong ◽  
Tao Wang ◽  
...  

AbstractRecently, deep learning has achieved great success in visual tracking tasks, particularly in single-object tracking. This paper provides a comprehensive review of state-of-the-art single-object tracking algorithms based on deep learning. First, we introduce basic knowledge of deep visual tracking, including fundamental concepts, existing algorithms, and previous reviews. Second, we briefly review existing deep learning methods by categorizing them into data-invariant and data-adaptive methods based on whether they can dynamically change their model parameters or architectures. Then, we conclude with the general components of deep trackers. In this way, we systematically analyze the novelties of several recently proposed deep trackers. Thereafter, popular datasets such as Object Tracking Benchmark (OTB) and Visual Object Tracking (VOT) are discussed, along with the performances of several deep trackers. Finally, based on observations and experimental results, we discuss three different characteristics of deep trackers, i.e., the relationships between their general components, exploration of more effective tracking frameworks, and interpretability of their motion estimation components.

Author(s):  
Dimitrios Meimetis ◽  
Ioannis Daramouskas ◽  
Isidoros Perikos ◽  
Ioannis Hatzilygeroudis

Author(s):  
Norikazu Ikoma ◽  
◽  
Akihiro Asahara ◽  

Real time visual tracking by particle filter has been implemented on Cell Broadband Engine in parallel. Major problem for the implementation is small size of Local Store (LS) in SPEs (Synergistic PEs), which are computational cores, to deal with image of large size. As a first step for the implementation, we focus on color single object tracking, which is one of the most simple case of visual tracking. By elaborating to compress the color extracted image into bit-wise representation of binary image, all information of the color extracted image can be stored in LS for 640×480 size of original image. By applying our previous implementation of general particle filter algorithm on Cell/B.E. to this specific case, we have achieved real time performance of visual tracking on PlayStation®3 about 7 fps with a camera of maximum 15 fps.


2021 ◽  
pp. 129-189
Author(s):  
Weiwei Xing ◽  
Weibin Liu ◽  
Jun Wang ◽  
Shunli Zhang ◽  
Lihui Wang ◽  
...  

2020 ◽  
Vol 84 ◽  
pp. 115807 ◽  
Author(s):  
Kaining Huang ◽  
Yan Shi ◽  
Fuqi Zhao ◽  
Zijun Zhang ◽  
Shanshan Tu

2021 ◽  
Author(s):  
Weiwei Xing ◽  
Weibin Liu ◽  
Jun Wang ◽  
Shunli Zhang ◽  
Lihui Wang ◽  
...  

Author(s):  
Xin Zhang ◽  
Licheng Jiao ◽  
Xu Liu ◽  
Xiaotong Li ◽  
Wenhua Zhang ◽  
...  

Author(s):  
Rawan Fayez ◽  
Mohamed Taha Abd Elfattah Taha ◽  
Mahmoud Gadallah

Visual object tracking remains a challenge facing an intelligent control system. A variety of applications serve many purposes such as surveillance. The developed technology faces plenty of obstacles that should be addressed including occlusion. In visual tracking, online learning techniques are most common due to their efficiency for most video sequences. Many object tracking techniques have emerged. However, the drifting problem in the case of noisy updates has been a stumbling block for the majority of relevant techniques. Such a problem can now be surmounted through updating the classifiers. The proposed system is called the Occluded Object Tracking System (OOTS) It is a hybrid system constructed from two algorithms: a fast technique Circulant Structure Kernels with Color Names (CSK-CN) and an efficient algorithm occlusion-aware Real-time Object Tracking (ROT). The proposed OOTS is evaluated with standard visual tracking benchmark databases. The experimental results proved that the proposed OOTS system is more reliable and provides efficient tracking results than other compared methods.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 387 ◽  
Author(s):  
Ming Du ◽  
Yan Ding ◽  
Xiuyun Meng ◽  
Hua-Liang Wei ◽  
Yifan Zhao

In recent years, regression trackers have drawn increasing attention in the visual-object tracking community due to their favorable performance and easy implementation. The tracker algorithms directly learn mapping from dense samples around the target object to Gaussian-like soft labels. However, in many real applications, when applied to test data, the extreme imbalanced distribution of training samples usually hinders the robustness and accuracy of regression trackers. In this paper, we propose a novel effective distractor-aware loss function to balance this issue by highlighting the significant domain and by severely penalizing the pure background. In addition, we introduce a full differentiable hierarchy-normalized concatenation connection to exploit abstractions across multiple convolutional layers. Extensive experiments were conducted on five challenging benchmark-tracking datasets, that is, OTB-13, OTB-15, TC-128, UAV-123, and VOT17. The experimental results are promising and show that the proposed tracker performs much better than nearly all the compared state-of-the-art approaches.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4810
Author(s):  
Ximing Zhang ◽  
Shujuan Luo ◽  
Xuewu Fan

Region proposal network (RPN) based trackers employ the classification and regression block to generate the proposals, the proposal that contains the highest similarity score is formulated to be the groundtruth candidate of next frame. However, region proposal network based trackers cannot make the best of the features from different convolutional layers, and the original loss function cannot alleviate the data imbalance issue of the training procedure. We propose the Spatial Cascaded Transformed RPN to combine the RPN and STN (spatial transformer network) together, in order to successfully obtain the proposals of high quality, which can simultaneously improves the robustness. The STN can transfer the spatial transformed features though different stages, which extends the spatial representation capability of such networks handling complex scenarios such as scale variation and affine transformation. We break the restriction though an easy samples penalization loss (shrinkage loss) instead of smooth L1 function. Moreover, we perform the multi-cue proposals re-ranking to guarantee the accuracy of the proposed tracker. We extensively prove the effectiveness of our proposed method on the ablation studies of the tracking datasets, which include OTB-2015 (Object Tracking Benchmark 2015), VOT-2018 (Visual Object Tracking 2018), LaSOT (Large Scale Single Object Tracking), TrackingNet (A Large-Scale Dataset and Benchmark for Object Tracking in the Wild) and UAV123 (UAV Tracking Dataset).


2021 ◽  
Vol 13 (5) ◽  
pp. 909
Author(s):  
Bangyu Wu ◽  
Delin Meng ◽  
Haixia Zhao

Seismic impedance inversion is essential to characterize hydrocarbon reservoir and detect fluids in field of geophysics. However, it is nonlinear and ill-posed due to unknown seismic wavelet, observed data band limitation and noise, but it also requires a forward operator that characterizes physical relation between measured data and model parameters. Deep learning methods have been successfully applied to solve geophysical inversion problems recently. It can obtain results with higher resolution compared to traditional inversion methods, but its performance often not fully explored for the lack of adequate labeled data (i.e., well logs) in training process. To alleviate this problem, we propose a semi-supervised learning workflow based on generative adversarial network (GAN) for acoustic impedance inversion. The workflow contains three networks: a generator, a discriminator and a forward model. The training of the generator and discriminator are guided by well logs and constrained by unlabeled data via the forward model. The benchmark models Marmousi2, SEAM and a field data are used to demonstrate the performance of our method. Results show that impedance predicted by the presented method, due to making use of both labeled and unlabeled data, are better consistent with ground truth than that of conventional deep learning methods.


Sign in / Sign up

Export Citation Format

Share Document