Origins of Negative Strain Rate Dependence of Stress Corrosion Cracking Initiation in Alloy 690, and Intergranular Crack Formation in Thermally Treated Alloy 690

2016 ◽  
Vol 47 (9) ◽  
pp. 4353-4356 ◽  
Author(s):  
Young Suk Kim ◽  
Sung Soo Kim
CORROSION ◽  
1986 ◽  
Vol 42 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Y. S. Garud ◽  
A. R. McIlree

Abstract A logical approach to quantitative modeling of intergranular stress corrosion cracking (IGSCC) is presented. The approach is based on the supposition (supported partly by experimental and field observations, and by a related plausible underlying mechanism) that strain rate is a key variable. The approach is illustrated for the specific case of NiCrFe Alloy 600 in high-purity water. Model parameters are determined based on the constant stress IGSCC data (between 290 and 365 C) assuming a power law relation between the damage and the nominal strain rate. The model may be interpreted in terms of a film rupture mechanism of the corrosion process. The related mechanistic considerations are examined for the specific case. Resulting calculations and stress as well as temperature dependence are shown to be in good agreement with the data. More data are needed for further verification under specific conditions of interest.


2021 ◽  
pp. 117453
Author(s):  
Zhao Shen ◽  
Edward Roberts ◽  
Naganand Saravanan ◽  
Phani Karamched ◽  
Takumi Terachi ◽  
...  

CORROSION ◽  
10.5006/3822 ◽  
2021 ◽  
Author(s):  
yang Zhao ◽  
Yuchen Liu ◽  
Xin Gai ◽  
Yun Bai ◽  
Tao Zhang ◽  
...  

The stress corrosion cracking (SCC) susceptibility of electron beam melted Ti-6Al-4V alloy (ET) was compared with the conventional wrought alloy (WT). The electrochemical and slow strain rate tensile (SSRT) tests, as well as surface analysis, were conducted under simulated shallow and deep-sea environment. Under shallow conditions, the SCC susceptibility of both alloys was almost the same because of consistent passivation and re-passivation performance of the passivating film. However, under deep-sea conditions, SCC susceptibility of ET was higher than that of WT due to stronger textured-like surface that appeared on ET alloy, where early developed passive film broke down, demonstrating lower passivation and re-passivation rate.


Author(s):  
Arindam Chakraborty ◽  
Wasimreza Momin ◽  
Angah Miessi ◽  
Peihua Jing ◽  
Haiyang Qian

Leak-Before-Break (LBB) is employed in design of nuclear power reactor piping to eliminate consideration of the dynamic effects of pipe rupture from the plant design basis for the affected piping system. LBB cannot be applied if environmental conditions that could lead to degradation by stress corrosion cracking exists. For Alloy 600/82/182 dissimilar metal welds (DMW) in pressurized water reactor plants, primary water stress corrosion cracking (PWSCC) is found to be active. Application of weld overlay (WOL) of non-susceptible Alloy 690/52/152 material has been shown to mitigate PWSCC growth in DMW. Therefore, LBB can be considered for a DMW with Alloy 690/52/152 overlay. However, WOL sizing design postulates a complex crack which is through wall in the overlay material and part through or full circumferential in the DMW base material. This significantly reduces the critical flaw size and in turn the maximum allowable flaw size for leak rate. The current industry practice conservatively ignores the full circumferential crack in the original pipe material and assumes a through wall crack along the entire pipe thickness. This assumptions leads to significantly reduced leakage due to smaller crack opening. The problem becomes more critical with small diameter pipes. The current work calculates the crack opening displacements (CODs) for a pipe with complex crack. Since it is a function of several geometry and materials parameters, response functions are generated to calculate CODs.


2017 ◽  
Vol 62 (2) ◽  
pp. 557-562 ◽  
Author(s):  
M. Sozańska ◽  
A. Mościcki ◽  
B. Chmiela

Abstract The article shows that the use of quantitative fracture description may lead to significant progress in research on the phenomenon of stress corrosion cracking of the WE43 magnesium alloy. Tests were carried out on samples in air, and after hydrogenation in 0.1 M Na2SO4 with cathodic polarization. Fracture surfaces were analyzed after different variants of the Slow Strain Rate Test. It was demonstrated that the parameters for quantitative evaluation of fracture surface microcracks can be closely linked with the susceptibility of the WE43 magnesium alloy operating under complex state of the mechanical load in corrosive environments. The final result of the study was the determination of the quantitative relationship between Slow Strain Rate Test parameters, the mechanical properties, and the parameters of the quantitative evaluation of fracture surface (microcracks).


2015 ◽  
Vol 766-767 ◽  
pp. 733-738
Author(s):  
A.V. Santhana Babu ◽  
P.K. Giridharan ◽  
A. Venugopal ◽  
P. Ramesh Narayanan ◽  
S.V.S. Narayana Murty

Limitation in penetration depth is a concern in conventional TIG welding. To improve penetration capability of TIG process, Flux Bounded TIG (FBTIG) has been developed. Stress corrosion cracking (SCC) behavior of FBTIG welds of aluminum alloy AA 2219 T87 is evaluated in 3.5 weight percent NaCl solution using Slow Strain Rate Test technique (SSRT) as per ASTM G129. SCC index defined as the ratio of the elongation of tensile tested specimen in NaCl to that of air is taken as a measure of the susceptibility to cracking. Based on the SCC index, it is concluded that the SCC resistance of FBTIG joints are good and comparable to that of conventional TIG welds.


Sign in / Sign up

Export Citation Format

Share Document