Room-temperature deformation behavior of a directionally solidified β (B2)-(Ni-Fe-Al) intermetallic alloy

1997 ◽  
Vol 28 (1) ◽  
pp. 135-147 ◽  
Author(s):  
A. Misra ◽  
J. T. Kim ◽  
R. Gibala
2009 ◽  
Vol 24 (11) ◽  
pp. 3387-3396 ◽  
Author(s):  
Arcan F. Dericioglu ◽  
Y.F. Liu ◽  
Yutaka Kagawa

An all-oxide Al2O3-TiO2 ceramic multilayer composed of 10–100 nm thick alternating layers was fabricated using the reactive magnetron sputtering process. Microindentation tests were carried out on the multilayer ceramic followed by microstructural observations of the cross-sections of the indented sites to characterize the indentation response of the system. During the observations, it was noted that an extensive room temperature “deformation” occurred in the multilayer ceramic material. The material shows a thickness reduction of as much as ∼40% under a conical indenter at 300 mN of load without microcracking and dislocation-assisted deformation. The room temperature deformation mechanism is governed by the relative movement and rearrangement of the anisotropic nanoscale columnar grains along the intergranular boundaries containing elongated voids. The relative sliding along the intergranular boundaries, and the subsequent granular rotation under indentation were well captured by finite element simulation.


2000 ◽  
Vol 646 ◽  
Author(s):  
Su-Ming Zhu ◽  
Makoto Tamura ◽  
Kazushi Sakamoto ◽  
Kunihiko Iwasaki

ABSTRACTThe present study is concerned with the processing, microstructural characterization, mechanical and tribological properties of fine-grained Fe-25Al-10Ti intermetallic alloy. The alloy was synthesized from elemental powders by mechanical alloying in an attritor-type ball milling system for 100 h, followed by hot isostatic pressing (HIP). After HIP treatment at 1073 K under an ultra-high pressure of 980 MPa, fully dense compacts with a grain size of about 200 nm were produced. Mechanical properties were evaluated by compression tests from room temperature to 1073 K. At room temperature, the alloy exhibits yield strength as high as 2.4 GPa, together with considerable rupture strain of 0.16. The yield strength decreases monotonically with increasing test temperature with no positive temperature dependence observed. The grain growth after high temperature deformation is not severe, indicating that the alloy has a relatively high thermal stability. Finally, tribological properties of the alloy were evaluated by using a ball-on-disk type wear tester and compared with those for gray cast iron, a currently used material for automotive brake rotors.


Author(s):  
A. Misra ◽  
R. Gibala

Ductile phase reinforcement is an attractive approach for enhancing the room temperature ductility and toughness of brittle intermetallics such as β−NiAl. For example, a directionally solidified alloy of nominal composition 70 at.% Ni −30 at.% Al, having a two-phase β (brittle matrix) and γ (ductile second phase) microstructure, exhibits up to 9% tensile ductility at room temperature [1]. In the present investigation, a microscopic study has been made to understand the mechanisms involved in the ductility enhancement of the β + γ composite.


Sign in / Sign up

Export Citation Format

Share Document