Synthesis and Characterization of Mechanically Alloyed and HIP-Consolidated Fe-25Al-10Ti Intermetallic Alloy

2000 ◽  
Vol 646 ◽  
Author(s):  
Su-Ming Zhu ◽  
Makoto Tamura ◽  
Kazushi Sakamoto ◽  
Kunihiko Iwasaki

ABSTRACTThe present study is concerned with the processing, microstructural characterization, mechanical and tribological properties of fine-grained Fe-25Al-10Ti intermetallic alloy. The alloy was synthesized from elemental powders by mechanical alloying in an attritor-type ball milling system for 100 h, followed by hot isostatic pressing (HIP). After HIP treatment at 1073 K under an ultra-high pressure of 980 MPa, fully dense compacts with a grain size of about 200 nm were produced. Mechanical properties were evaluated by compression tests from room temperature to 1073 K. At room temperature, the alloy exhibits yield strength as high as 2.4 GPa, together with considerable rupture strain of 0.16. The yield strength decreases monotonically with increasing test temperature with no positive temperature dependence observed. The grain growth after high temperature deformation is not severe, indicating that the alloy has a relatively high thermal stability. Finally, tribological properties of the alloy were evaluated by using a ball-on-disk type wear tester and compared with those for gray cast iron, a currently used material for automotive brake rotors.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhenghao Chen ◽  
Bhaskar Paul ◽  
Sanjib Majumdar ◽  
Norihiko L. Okamoto ◽  
Kyosuke Kishida ◽  
...  

AbstractThe plastic deformation behavior of single crystals of two transition-metal diborides, ZrB2 and TiB2 with the AlB2 structure has been investigated at room temperature as a function of crystal orientation and specimen size by micropillar compression tests. Although plastic flow is not observed at all for their bulk single crystals at room temperature, plastic flow is successfully observed at room temperature by the operation of slip on {1$${\bar{1}}$$ 1 ¯ 00}<11$${\bar{2}}$$ 2 ¯ 3> in ZrB2 and by the operation of slip on {1$${\bar{1}}$$ 1 ¯ 00}<0001> and {1$${\bar{1}}$$ 1 ¯ 00}<11$${\bar{2}}$$ 2 ¯ 0> in TiB2. Critical resolve shear stress values at room temperature are very high, exceeding 1 GPa for all observed slip systems; 3.01 GPa for {1$${\bar{1}}$$ 1 ¯ 00}<11$${\bar{2}}$$ 2 ¯ 3> slip in ZrB2 and 1.72 GPa and 5.17 GPa, respectively for {1$${\bar{1}}$$ 1 ¯ 00}<0001> and {1$${\bar{1}}$$ 1 ¯ 00}<11$${\bar{2}}$$ 2 ¯ 0> slip in TiB2. The identified operative slip systems and their CRSS values are discussed in comparison with those identified in the corresponding bulk single crystals at high temperatures and those inferred from micro-hardness anisotropy in the early studies.


2002 ◽  
Vol 17 (5) ◽  
pp. 991-1001 ◽  
Author(s):  
X. Y. Qin ◽  
J. S. Lee ◽  
C. S. Lee

The microstructures and mechanical behavior of bulk nanocrystalline γ–Ni–xFe (n-Ni–Fe) with x = ∼19–21 wt%, synthesized by a mechanochemical method plus hot-isostatic pressing, were investigated using microstructural analysis [x-ray diffraction, energy-dispersive spectroscopy, light emission spectrum, atomic force microscopy (AFM), and optical microscopy (OM)], and mechanical (indentation and compression) tests, respectively. The results indicated that the yield strength (σ0.2) of n-Ni–Fe (d ∼ 33 nm) is about 13 times greater than that of conventional counterpart. The change of yield strength with grain size was basically in agreement with Hall–Petch relation in the size range (33–100 nm) investigated. OM observations demonstrated the existence of two sets of macroscopic bandlike deformation traces mostly orienting at 45–55° to the compression axis, while AFM observations revealed that these bandlike traces consist of ultrafine lines. The cause for high strength and the possible deformation mechanisms were discussed based on the characteristics of microstructures and deformation morphology of n-Ni–Fe.


2017 ◽  
Vol 36 (7) ◽  
pp. 701-710
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Xiaolu Zhang ◽  
Wen Wang

AbstractHigh temperature deformation behavior of BFe10-1-2 cupronickel alloy was investigated by means of isothermal compression tests in the temperature range of 1,023~1,273 K and strain rate range of 0.001~10 s–1. Based on orthogonal experiment and variance analysis, the significance of the effects of strain, strain rate and deformation temperature on the flow stress was evaluated. Thereafter, a constitutive equation was developed on the basis of the orthogonal analysis conclusions. Subsequently, standard statistical parameters were introduced to verify the validity of developed constitutive equation. The results indicated that the predicted flow stress values from the constitutive equation could track the experimental data of BFe10-1-2 cupronickel alloy under most deformation conditions.


2019 ◽  
Vol 38 (2019) ◽  
pp. 168-177 ◽  
Author(s):  
Liu Shi-feng ◽  
Shi Jia-min ◽  
Yang Xiao-kang ◽  
Cai Jun ◽  
Wang Qing-juan

AbstractIn this study, the high-temperature deformation behaviour of a TC17 titanium alloy was investigated by isothermal hot compression tests in a wide range of temperatures (973–1223 K) and strain rates (0.001–10 s−1). Then, the constitutive equations of different phase regimes (α + β and single β phases) were developed on the basis of experimental stress-strain data. The influence of the strain has been incorporated in the constitutive equation by considering its effect on different material constants for the TC17 titanium alloy. Furthermore, the predictability of the developed constitutive equation was verified by the correlation coefficient and average absolute relative error. The results indicated that the obtained constitutive equations could predict the high-temperature flow stress of a TC17 titanium alloy with good correlation and generalization.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 976 ◽  
Author(s):  
Sergey Mironov ◽  
Yutaka S. Sato ◽  
Hiroyuki Kokawa ◽  
Satoshi Hirano ◽  
Adam L. Pilchak ◽  
...  

The present work was undertaken to shed additional light on the globular-α microstructure produced during FSP of Ti-6Al-4V. To this end, the electron backscatter diffraction (EBSD) technique was employed to characterize the crystallographic aspects of such microstructure. In contrast to the previous reports in the literature, neither the texture nor the misorientation distribution in the α phase were random. Although the texture was weak, it showed a clear prevalence of the P1 and C-fiber simple-shear orientations, thus providing evidence for an increased activity of the prism-<a> and pyramidal <c+a> slip systems. In addition, the misorientation distribution exhibited a crystallographic preference of 60° and 90° boundaries. This observation was attributed to a partial α→β→α phase transformation during/following high-temperature deformation and the possible activation of mechanical twinning.


2010 ◽  
Vol 638-642 ◽  
pp. 3616-3621 ◽  
Author(s):  
K.P. Rao ◽  
Y.V.R.K. Prasad ◽  
Norbert Hort ◽  
Karl Ulrich Kainer

The hot working behavior of Mg-3Sn-2Ca alloy has been investigated in the temperature range 300–500 oC and strain rate range 0.0003–10 s-1, with a view to evaluate the mechanisms and optimum parameters of hot working. For this purpose, a processing map has been developed on the basis of the flow stress data obtained from compression tests. The stress-strain curves exhibited steady state behavior at strain rates lower than 0.01 s-1 and at temperatures higher than 350 oC and flow softening occurred at higher strain rates. The processing map exhibited two dynamic recrystallization domains in the temperature and strain rate ranges: (1) 300–420 oC and 0.0003–0.003 s-1, and (2) 420–500 oC and 0.003–1.0 s-1, the latter one being useful for commercial hot working. Kinetic analysis yielded apparent activation energy values of 161 and 175 kJ/mole in domains (1) and (2) respectively. These values are higher than that for self-diffusion in magnesium suggesting that the large volume fraction of intermetallic particles CaMgSn present in the matrix generates considerable back stress. The processing map reveals a wide regime of flow instability which gets reduced with increase in temperature or decrease in strain rate.


2005 ◽  
Vol 495-497 ◽  
pp. 1049-1054 ◽  
Author(s):  
Yoshimasa Takayama ◽  
Jerzy A. Szpunar ◽  
Hajime Kato

Intragranular misorientation reflects strain generated during deformation with dislocation glide. The SEM/EBSP (scanning electron microscope/ electron back scatter diffraction pattern) technique provides is “kernel average misorientation (KAM)” as the most appropriate quantity to evaluate the strain or the stored energy for a given point. The KAM is defined for a given point as the average misorientation of that point with all of its neighbors. In the present paper two analyses of the intragranular misorientation using the SEM/EBSP technique for a cyclic deformation at room temperature and a high temperature deformation in an Al-Mg-Mn alloy are reviewed.


1990 ◽  
Vol 213 ◽  
Author(s):  
C. Steve Chang ◽  
D. P. Pope

AbstractHigh temperature compression tests were performed on Cr 3Si single crystalline and poly crystalline samples. Slip systems were determined to be of the {001}<010> type based on an analysis of slip traces and Laue spots. Single crystals show significant compressive ductility at temperatures above 0.7Tm. The implication of cube slip on the ductility of A15-type intermetallic compounds is discussed.


2014 ◽  
Vol 922 ◽  
pp. 807-812 ◽  
Author(s):  
Robert Werner ◽  
Emanuel Schwaighofer ◽  
Martin Schloffer ◽  
Helmut Clemens ◽  
Janny Lindemann ◽  
...  

In the present study the high-temperature deformation behavior of a caste and subsequently HIPed β-solidifying γ-TiAl-based alloy with a nominal composition of Ti-43.5Al-4Nb-1Mo-0.1B (in at. %), termed TNM alloy, is investigated. At room temperature this alloy consists of ordered γ-TiAl, α2-Ti3Al and βo-TiAl phases. By increasing the temperature, α2and βodisorder to α and β, respectively. In order to get a better understanding of dynamic recovery and recrystallization processes during thermomechanical processing, isothermal compression tests on TNM specimens are carried out on a Gleeble®3500 simulator. These tests are conducted at temperatures ranging from 1100 °C to 1250 °C (in the α/α2+β/βo+γ phase field region) applying strain rates in the range of 0.005 s-1to 0.5 s-1up to a true strain of 0.9. The evolution of microstructure along with the dynamically recrystallized grain size during hot deformation is examined by scanning electron microscopy (SEM). The flow softening behavior after reaching the peak stress in the true stress-true strain curve is attributed to dynamic recrystallization. By using the Zener-Hollomon parameter as a temperature-compensated strain rate the dependence of flow stress on temperature and strain rate is shown to follow a hyperbolic-sine Arrhenius-type relationship.


Sign in / Sign up

Export Citation Format

Share Document