Physicochemical aspects of titanium slag production and solidification

2003 ◽  
Vol 34 (5) ◽  
pp. 581-588 ◽  
Author(s):  
P. C. Pistorius ◽  
C. Coetzee
Author(s):  
V. A. Kobelev ◽  
D. A. Rymkevich ◽  
E. A. Stepanov ◽  
A. G. Zuev

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 732
Author(s):  
Botao Xue ◽  
Lingzhi Yang ◽  
Yufeng Guo ◽  
Feng Chen ◽  
Shuai Wang ◽  
...  

A novel direct-current electric arc furnace (DC-EAF) was designed and constructed in this study for experimentally investigating high-titanium slag smelting, with an emphasis on addressing the issues of incomplete separation of metal and slag as well as poor insulation effects. The mechanical components (crucible, electrode, furnace lining, etc.) were designed and developed, and an embedded crucible design was adopted to promote metal-slag separation. The lining and bottom thicknesses of the furnace were determined via calculation using the heat balance equations, which improved the thermal insulation. To monitor the DC-EAF electrical parameters, suitable software was developed. For evaluating the performance of the furnace, a series of tests were run to determine the optimal coke addition under the conditions of constant temperature (1607 °C) and melting time (90 min). The results demonstrated that for 12 kg of titanium-containing metallized pellets, 4% coke was the most effective for enrichment of TiO2 in the high-titanium slag, with the TiO2 content reaching 93.34%. Moreover, the DC-EAF met the design requirements pertaining to lining thickness and facilitated metal-slag separation, showing satisfactory performance during experiments.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 888
Author(s):  
Helin Fan ◽  
Ruixiang Wang ◽  
Zhifeng Xu ◽  
Huamei Duan ◽  
Dengfu Chen

Synthetic rutile was prepared from titanium slag melt with low energy consumption and a small amount of additive (B2O3) in our previous work. The modification mechanism of titanium slag was not clear enough. The migration and enrichment behaviors of Ca and Mg elements during cooling and crystallization of boron-bearing titanium slag melt were characterized by XRF, FESEM, EMPA, and XPS. Results show that when additive (B2O3) is added, Ti elements are migrated and enriched in the area to generate rutile, while Ca, Mg, and B elements are migrated and enriched in another area to generate borate. With the additive (B2O3) amount increased, Ca and Mg element migration is complete and more thorough. Additive (B2O3) promotes rutile formation and inhibits the formation of anosovite during cooling and crystallization of titanium slag melt. With the additive (B2O3) amount increasing from 0% to 6%, the proportion of Ti3+ in the modified titanium slag reduces from 9.15% to 0%, and the proportion of Ti4+ increases from 90.85% to 100% under the same cooling and crystallization condition. The result will lay the foundation for the efficient preparation of synthetic rutile by adding B2O3 to the titanium slag melt.


2020 ◽  
Vol 996 ◽  
pp. 179-184
Author(s):  
Shi Hong Huang ◽  
Xian Hao Long ◽  
Yan Cui ◽  
Ting Lei

This paper introduces the characteristics of titanium mineral resources in Yunnan Province and the production situation of titanium-slag smelting, The article puts forward the necessity of constructing a project of producing 80,000t/a of high-titanium. The process is advanced production technology of a company in South Africa, the process has a large capacity, gas utilization, energy, and low electrode consumption, the article carried out economic evaluation of the project.


1959 ◽  
Vol 8 (4) ◽  
pp. 225-231
Author(s):  
Katsuhiko NAKA ◽  
Hiromoto IWAMATSU

2021 ◽  
Vol 11 (1) ◽  
pp. 89-93
Author(s):  
Chinh Tran Van ◽  
Anh Tran Thi Hien ◽  
Tu Ha Thi Cam ◽  
Hoai Truong Viet ◽  
Phuong Nguyen Thi Hoai ◽  
...  

This paper describes a novel process for the synthesis of TiO2 from titanium slag, which is realized via roasting titanium slag with KHSO4, acid leaching and hydrolysis. The results showed that the optimum conditions were a mass ratio of KHSO4 to titanium slag of 6, a temperature of 600 oC for 1,5 hours. Besides, this study investigated the possibility of synthesized TiO2 for photocatalytic degradation of methylene blue.


2019 ◽  
Vol 116 (4) ◽  
pp. 417
Author(s):  
Baohua Wang ◽  
Mingbo Zhang ◽  
Rong Zhu ◽  
Shengtao Qiu

A new idea that the low-titanium slag (LTS) used in the steelmaking process after CO2injection desulfurization is proposed in this paper. The CO2injection process mainly involves the grinding of low-titanium slag, mixing of slag and water, CO2injection, filtration, and then obtains the low sulfur and low titanium slag. The effects of cooling rates (water cooling, air cooling, crucible cooling, and furnace cooling) and CO2injection on the desulfurization of LTS were studied by both experimental and thermodynamic calculations. The results showed that sulfite and sulfate ions couldn’t be removed from LTS using this method, and the main removal substance in slag was sulfide ion S2−. The desulfurization mechanism with CO2injection was that the CO2injection reacted with H2O to form H2CO3, and then the H+disrupted from H2CO3reacted with the S2−in the slag to achieve desulfurization. During the desulfurization process, the desulfurization reaction was mainly determined by S2− + CO2(aq) + H2O (l) = CO32− + H2S(g) within the first 5 min, and then the main desulfurization reaction was S2− + 2CO2(aq) + 2H2O(l) = 2HCO3− + H2S(g). As the cooling rate decreasing, the desulfurization rate of LTS increased. The desulfurization effect of furnace-cooled slag is the highest in four kinds of slag. The desulfurization rate of furnace-cooled slag reaches 72.28%, which is 4.34, 1.75 and 1.15 times than that of water-cooled slag, air-cooled slag and crucible-cooled slag, respectively. The optimal rate of desulfurization is 80.0%.


2009 ◽  
Vol 96 (1-2) ◽  
pp. 52-56 ◽  
Author(s):  
Yongjie Zhang ◽  
Tao Qi ◽  
Yi Zhang

Sign in / Sign up

Export Citation Format

Share Document