electrode consumption
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 13)

H-INDEX

4
(FIVE YEARS 2)

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3528
Author(s):  
Thenuwara Arachchige Omila Kasun Meetiyagoda ◽  
Takeshi Fujino

Cyanobacterial blooms are a threat to the drinking water supply owing to their potential toxicity. Microcystins which are the most widespread cyanotoxins, are mainly produced by Microcystis spp. In this study, we cultured Microcystis aeruginosa cells in BG-11 medium at 25 °C to investigate the efficiency of the electro-coagulation–flotation process to remove them. Different anode materials (Fe, Al, Cu, and Zn) along with a graphite cathode were compared separately in the 10–100 mA current range in a 0.025 M Na2SO4 electrolyte. Turbidity, optical density at 684 nm (OD684), OD730, Chl-a concentration, and DOC concentration were analyzed to clarify the mechanism by which M. aeruginosa cells are removed. The Al anode indicated the highest removal efficiencies in terms of turbidity (90%), OD684 and OD730 (98%), and Chl-a concentration (96%) within 30 min at 4.0 mA/cm2 current density and the lowest average electrode consumption of 0.120 ± 0.023 g/L. The energy consumption of the Al electrode was 0.80 Wh/L. From these results, we found that Al was the best among the anode materials evaluated to remove M. aeruginosa cells. However, further studies are required to optimize the Al anode in terms of pH, treatment time, electrode distance, and electrolyte concentration to enhance the removal of M. aeruginosa cells.


2020 ◽  
Vol 996 ◽  
pp. 179-184
Author(s):  
Shi Hong Huang ◽  
Xian Hao Long ◽  
Yan Cui ◽  
Ting Lei

This paper introduces the characteristics of titanium mineral resources in Yunnan Province and the production situation of titanium-slag smelting, The article puts forward the necessity of constructing a project of producing 80,000t/a of high-titanium. The process is advanced production technology of a company in South Africa, the process has a large capacity, gas utilization, energy, and low electrode consumption, the article carried out economic evaluation of the project.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 726 ◽  
Author(s):  
Kimberly Swain ◽  
Bassim Abbassi ◽  
Chris Kinsley

Significant over-strength discharge fees are often imposed on breweries for the disposal of high-strength effluent to sanitary sewers. In this research work, the removal performances of electrocoagulation (EC) compared with operating electrocoagulation and chemical coagulation in sequence (EC-CC) or vice-versa (CC-EC) was examined to determine the capability of treatment in reducing the strength of the wastewater. Optimal operating parameters regarding electrolysis time, initial pH, and applied power were determined in conjunction with nutrient removal performance, electrode consumption and energy usage. Combined EC-CC treatment has been demonstrated to be economically feasible for brewery wastewater applications from an energy consumption perspective due to the efficiency of nutrient removal and the reduction of sewer discharge costs. Treatment by EC-CC at 5 W for 20 min using aluminum electrodes resulted in enhanced and consistent removal efficiencies of 26%, 74%, 76%, and 85% for chemical oxygen demand (COD), reactive phosphorous (RP), total phosphorous (TP) and total suspended solids (TSS), respectively. Energy consumption was the main contributor to operating cost. By considering potential recovered over-strength discharge fees (ODF), EC-CC treatment is economically feasible and beneficial in a brewery wastewater application. The results demonstrated the effectiveness of the CC-EC process to remove phosphorous, organics and solids from brewery wastewater at lower power supply, so that the recovered ODF cost for CC-EC at 5 W-EC is 23% higher than at 10 W-EC.


2020 ◽  
Vol 69 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Sakthisharmila Palanisamy ◽  
Palanisamy Nachimuthu ◽  
Mukesh Kumar Awasthi ◽  
Balasubramani Ravindran ◽  
Soon Woong Chang ◽  
...  

Abstract Textile effluents contain triazine-substituted reactive dyes that cause health problems such as cancer, birth defects, and hormone damage. An electrochemical process was employed effectively to degrade azo reactive dye with the aim of reducing the production of carcinogenic chemicals during biodegradation. Textile dye C.I. Reactive Red 2 (RR2), a model pollutant that contains dichloro triazine ring, was subjected to the electrocoagulation process using aluminium (Al) electrodes. A maximum of 97% of colour and 72% of chemical oxygen demand (COD) removal efficiencies were achieved and 9.5 kWh/kg dye electrical energy and 0.8 kg Al/kg dye electrode consumption were observed. The dye removal mechanism was studied by analysing the results of UV-Vis spectra of RR2 and treated samples at various time intervals during electrocoagulation. Fourier transform infrared (FTIR) spectra and energy dispersive X-ray (EDX) spectral studies were used for analysing the electrocoagulated flocs. The results indicate that in this process the dye gets removed by adsorption and there is no significant carcinogenic by-product formation during the degradation of dye.


Sign in / Sign up

Export Citation Format

Share Document