Effects of Nickel on the Oxide/Metal Interface Morphology and Oxidation Rate During High-Temperature Oxidation of Fe–Cu–Ni Alloys

2010 ◽  
Vol 41 (3) ◽  
pp. 598-611 ◽  
Author(s):  
Lan Yin ◽  
Sukumar Balaji ◽  
Seetharaman Sridhar
Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2104 ◽  
Author(s):  
Hediyeh Dabbaghi ◽  
Keyvan Safaei ◽  
Mohammadreza Nematollahi ◽  
Parisa Bayati ◽  
Mohammad Elahinia

In this study, the effect of the addition of Hf on the oxidation behavior of NiTi alloy, which was processed using additive manufacturing and casting, is studied. Thermogravimetric analyses (TGA) were performed at the temperature of 500, 800, and 900 °C to assess the isothermal and dynamic oxidation behavior of the Ni50.4Ti29.6Hf20 at.% alloys for 75 h in dry air. After oxidation, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to analyze the oxide scale formed on the surface of the samples during the high-temperature oxidation. Two stages of oxidation were observed for the NiTiHf samples, an increasing oxidation rate during the early stage of oxidation followed by a lower oxidation rate after approximately 10 h. The isothermal oxidation curves were well matched with a logarithmic rate law in the initial stage and then by parabolic rate law for the next stage. The formation of multi-layered oxide was observed for NiTiHf, which consists of Ti oxide, Hf oxide, and NiTiO3. For the binary alloys, results show that by increasing the temperature, the oxidation rate increased significantly and fitted with parabolic rate law. Activation energy of 175.25 kJ/mol for additively manufactured (AM) NiTi and 60.634 kJ/mol for AM NiTiHf was obtained.


2017 ◽  
Vol 87 (3-4) ◽  
pp. 333-341 ◽  
Author(s):  
T. Jonsson ◽  
H. Larsson ◽  
S. Karlsson ◽  
H. Hooshyar ◽  
M. Sattari ◽  
...  

Author(s):  
P .N. Rowley ◽  
R. Brydson ◽  
J. A. Little ◽  
S. R. J. Saunders

The microstructure and chemical composition of oxide films formed during the initial stages of high temperature oxidation have long been recognised as having a major effect on subsequent scaling behaviour. For example, the development of thick (>lμm) duplex scales on Fe-Cr alloys is assumed to occur via a mechanism of pore and fissure formation in the initial oxide (Atkinson, Tomlinson and Cory.) However, this process has rarely been observed using electron microscopy.The investigation of the oxidation behaviour of Fe-9Cr alloys in high temperature steam gives an insight into these scale breakdown processes. Within 3 minutes of the onset of oxidation, significant breakdown of the initially formed thin film occurs due to the development of readily visible fissures and pores at oxide grain boundaries (figure 1). This leads to the ready ingress of oxidant and the rapid development of a thick duplex Fe3O4/(Fe,Cr)3O4 oxide with a thin outer layer of α-Fe2O3 (figure 2). The extremely porous nature of this scale allows further inward diffusion of molecular oxidant, thereby instituting the continued growth of (Fe,Cr)3O4 at the scale/metal interface.


2011 ◽  
Vol 391-392 ◽  
pp. 606-610 ◽  
Author(s):  
Huai Shu Zhang ◽  
Hong Hua Zhang ◽  
Jun Huai Xiang ◽  
Shan Wang ◽  
Di Wu

The oxidation behavior of Co-10Cr-5Al-0.3Y alloy in 1 atm of pure O2 at 700°C was investigated. The addition of 0.3 at.%Y significantly increased the oxidation rate of the alloy and changed the oxidation behavior from the approximate parabolic rate law to linear rate law. The scale grown on the surface at 700°C was porous with many small voids and cracks, and was composed of an outer CoO layer and an inner complex layer rich in Al2O3 and Cr2O3 which were intermingled with yttric oxide and spinel Co(Cr, Al)2O4.


1990 ◽  
Vol 213 ◽  
Author(s):  
B.A. Pint ◽  
A. Jain ◽  
L.W. Hobbs

ABSTRACTNiAl was ion implanted with yttrium (2×1016 cm−2) in order to study its effect on the very high temperature (1000–1500°C) oxidation properties. At 1000°C, implanted Y stabilizes the faster growing θ-Al2O3 phase, thus slightly increasing the oxidation rate. At 1200°C, where predominantly α-Al2 O3 is formed with and without Y, there is a factor of 4 reduction in the oxidation rate. However at higher than 1200°C, there is little effect by Y on the oxidation rate. Cyclic testing showed that the Y implant had an imperfect and short-lived improvement on adherence relative to other Y-containing alloys. Variations in aluminum content from 23.5 to 36.0wt%(40–55at%) had little effect on the oxidation properties. Initial experiments at 1500°C with a novel Rh marker indicate that alumina grows at least partially by outward cation diffusion both with and without Y.


Sign in / Sign up

Export Citation Format

Share Document