Characterization of the Influence of Tool Pin Profile on Microstructural and Mechanical Properties of Friction Stir Welding

2014 ◽  
Vol 45 (5) ◽  
pp. 1887-1894 ◽  
Author(s):  
Javad Marzbanrad ◽  
Mostafa Akbari ◽  
Parviz Asadi ◽  
Samad Safaee
Author(s):  
Laxmana Raju Salavaravu ◽  
Lingaraju Dumpala

Submerged friction stir welding (FSW) is used to improve the weld zones mechanical properties in the present study. This research aims to obtain the optimized process parameters used to fabricate the AA6063 Submerged FSW joint. In the Submerged FSW process, the most important influential factors are tool rotational speed, traverse speed, and pin profile in a seawater environment. The different workpieces are friction stir welded while submerged in seawater at different tool rotational speeds, traverse speeds, and tool pin profiles such as square pin, cylindrical taper pin, and threaded pin. The produced weldments were tested for the mechanical properties of higher tensile strength, microhardness, corrosion rate, and the microstructure of weldments was characterized by using a scanning electron microscope, transmission electron microscope, and X-ray diffractometer. The corrosion rate is investigated by using an electrochemical analyzer by potential dynamic polarization open-circuit technique. For this investigation, The Taguchi method with the L9 orthogonal array design of experimentation is adopted. The maximum UTS was acquired in the weld joint fabricated with 1250 r/min of tool rotational speed, 45 mm/min traverse speed, and a square tool pin. The stirred zone is tested for microhardness. High hardness is achieved with high tool rotational speed and low traverse speed with a square tool pin profile. The corrosion rate is also decreased with high tool rotational speed, low traverse speed, and a square tool pin profile.


2011 ◽  
Vol 415-417 ◽  
pp. 1140-1146 ◽  
Author(s):  
R. Palanivel ◽  
P. Koshy Mathews ◽  
M. Balakrishnan ◽  
I. Dinaharan ◽  
N. Murugan

Aluminium alloys generally has low weldability by traditional fusion welding process. The development of the Friction Stir Welding (FSW) has provided an alternative improved way of producing aluminium joints, in a faster and reliable manner. FSW process has several advantages, in particular the possibility to weld dissimilar aluminium alloys. This study focuses on the behavior of tensile strength of dissimilar joints of AA6351-T6 alloy to AA5083-H111 alloy produced by friction stir welding was analysed. Five different tool pin profile such as Straight Square (SS), Tapered Square (TS), Straight Hexagon (SH), Straight Octagon (SO) and Tapered Octagon (TO) with three different axial force (1tonne, 1.5tonne, 2 tonne) have been used to weld the joints. The effect of pin profiles and axial force on tensile properties and material flow behaviour of the joint was analyzed and it was found that the straight square pin profile with 1.5 tonne produced better tensile strength then other tool pin profile and axial force.


2012 ◽  
Vol 445 ◽  
pp. 789-794 ◽  
Author(s):  
Vahid Moosabeiki ◽  
Ghasem Azimi ◽  
Mostafa Ghayoor

Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. Friction stir tool plays a major role in friction stir welding process. In this investigation, it is tried to evaluate the effect of tool pin thread and tool shoulder curvature on FSW zone formation in AA6061 aluminium alloy. In this regard, six different tool pin geometries (threadless triangular pin with/without conical shoulder, threaded triangular pin with conical shoulder, threadless square pin with/without conical shoulder, threaded square pin with conical shoulder) are used to fabricate the joints. The formation of FSP zones are analyzed macroscopically. Tensile properties of the joints are evaluated and correlated with the FSP zone formation. Consequently, it is obtained that welding creates a higher quality compared to other tool pin profiles using the square tool with curved shoulder and having threaded pin.


Sign in / Sign up

Export Citation Format

Share Document