Texture Evaluation of a Bi-Modal Structure During Static Recrystallization of Hot-Deformed Mg-Al-Sn Alloy

2016 ◽  
Vol 47 (6) ◽  
pp. 3326-3332 ◽  
Author(s):  
Abu Syed Humaun Kabir ◽  
Jing Su ◽  
Stephen Yue
Author(s):  
C. W. Price

Little evidence exists on the interaction of individual dislocations with recrystallized grain boundaries, primarily because of the severely overlapping contrast of the high dislocation density usually present during recrystallization. Interesting evidence of such interaction, Fig. 1, was discovered during examination of some old work on the hot deformation of Al-4.64 Cu. The specimen was deformed in a programmable thermomechanical instrument at 527 C and a strain rate of 25 cm/cm/s to a strain of 0.7. Static recrystallization occurred during a post anneal of 23 s also at 527 C. The figure shows evidence of dissociation of a subboundary at an intersection with a recrystallized high-angle grain boundary. At least one set of dislocations appears to be out of contrast in Fig. 1, and a grainboundary precipitate also is visible. Unfortunately, only subgrain sizes were of interest at the time the micrograph was recorded, and no attempt was made to analyze the dislocation structure.


1987 ◽  
Vol 48 (C3) ◽  
pp. C3-171-C3-177 ◽  
Author(s):  
M. GONÇALVES ◽  
C. M. SELLARS

2012 ◽  
Vol 48 (8) ◽  
pp. 915 ◽  
Author(s):  
Hongtao HUANG ◽  
Andrew Godfrey ◽  
Wei LIU ◽  
Ruihe TANG ◽  
Qing LIU

2011 ◽  
Vol 702-703 ◽  
pp. 435-438
Author(s):  
Peter D. Hodgson ◽  
Pavel Cizek ◽  
A.S. Taylor ◽  
Hossein Beladi

The current work has investigated the texture development in an austenitic Ni-30Fe model alloy during deformation within the dynamic recrystallization (DRX) regime and after post-deformation annealing. Both the deformed matrix and DRX texture displayed the expected FCC shear components, the latter being dominated by the low Taylor factor grains, which was presumably caused by their lower consumption rate during DRX. The deformed matrix grains were largely characterized by organized, microband structures, while the DRX grains showed more random, complex subgrains/cell arrangements. The latter substructure type proved to be significantly less stable during post-deformation annealing. The recrystallization of the deformed matrix occurred through nucleation and growth of new grains fully replacing the deformed structure, as expected for the classical static recrystallization (SRX). Unlike the DRX grains, the SRX texture was essentially random. By contrast, a novel softening mechanism was revealed during annealing of the fully DRX microstructure. The initial post-dynamic softening stage involved rapid growth of the dynamically formed nuclei and migration of the mobile boundaries in line with the well-established metadynamic recrystallization (MDRX) mechanism, which weakened the starting DRX texture. However, in parallel, the sub-boundaries within the deformed DRX grains progressively disintegrated through dislocation climb and dislocation annihilation, which ultimately led to the formation of dislocation-free grains. Consequently, the weakened DRX texture largely remained preserved throughout the annealing process.


1997 ◽  
Vol 119 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Kunsoo Huh ◽  
Jeffrey L. Stein

Because the behavior of the condition number can have highly steep and multi-modal structure, optimal control and monitoring problems based on the condition number cannot be easily solved. In this paper, a minimization problem is formulated for κ2(P), the condition number of an eigensystem (P) of a matrix in terms of the L2 norm. A new non-normality measure is shown to exist that guarantees small values for the condition number. In addition, this measure can be minimized by proper selection of controller and observer gains. Application to the design of well-conditioned controller and observer-based monitors is illustrated.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Baochun Zhao ◽  
Tan Zhao ◽  
Guiyan Li ◽  
Qiang Lu

Double compression tests were performed on a Gleeble-3800 thermomechanical simulator to study the softening behaviors of deformed austenite in a V-N microalloyed steel. The static recrystallization volume fractions were calculated by stress offset method, and the kinetic model of static recrystallization was constructed. The effects of temperature, strain, and time interval on the softening behaviors were analyzed, and the interactions between precipitation and recrystallization were discussed. The results show that the softening behaviors of the deformed austenite at lower temperature or higher temperature are markedly different. At the temperature of 850°C or 800°C, pinning effects of the precipitates play the main role, and the recrystallization process is inhibited, which leads to the formation of plateaus in the softening curves. An increase in strain promotes the precipitation and recrystallization processes while reduces the inhibition effect of precipitation on recrystallization as well.


1988 ◽  
Vol 24 (12) ◽  
pp. 2352-2354 ◽  
Author(s):  
R.T. Hammond

2006 ◽  
Vol 503-504 ◽  
pp. 705-710 ◽  
Author(s):  
Goroh Itoh ◽  
Hisashi Hasegawa ◽  
Tsing Zhou ◽  
Yoshinobu Motohashi ◽  
Mitsuo Niinomi

Usual static recrystallization treatment and a method to provide intense plastic deformation, ARB namely Accumulative Roll-Bonding, have been applied to two beta type titanium alloys, i.e. Ti-29Nb-13Ta-4.6Zr and Ti-15V-3Cr-3Sn-3Al. Microstructural change as well as work-hardening behavior was examined as a function of plastic strain. Both the work-hardening rate and the hardness at the initial as-hot-rolled state were smaller in the Ti-Nb-Ta-Zr alloy than in the Ti-V-Cr-Sn-Al alloy. Recrystallized grains of 14μm in size were obtained by the usual static recrystallization treatment, which was significantly smaller than that of the starting as-hot-rolled plate of 38μm. No significant change other than flattening and elongating of the original grains was found in the optical microscopic scale. It was revealed, however, from a TEM observation combined with selected area diffraction technique that geometric dynamic recrystallization occurred in the Ti-Nb-Ta-Zr alloy deformed at room temperature by a true strain of 5, resulting in an ultra-fine-grained microstructure where the grain size was roughly estimated to be about 100nm.


1997 ◽  
Vol 28 (3-4) ◽  
pp. 211-218 ◽  
Author(s):  
V. Marx ◽  
D. Raabe ◽  
O. Engler ◽  
G. Gottstein

In this study both primary static recrystallization and static recovery of cold rolled bcc and fcc metals and alloys are numerically simulated using a three-dimensional model that is based on a modified cellular automaton approach. The model considers the influence of the initial deformation texture and microstructure on both static recovery and primary static recrystallization with a high spatial resolution. The cellular automat technique provides both local and statistical information about the kinetics, the morphology and the texture change during annealing. The influence of nucleation and growth can be studied in detail. The simulations are compared to experimental results obtained on fcc and bcc polycrystals.


Sign in / Sign up

Export Citation Format

Share Document