Thermal Comfort Study of a Compact Thermoelectric Air Conditioner

2010 ◽  
Vol 39 (9) ◽  
pp. 1659-1664 ◽  
Author(s):  
S. Maneewan ◽  
W. Tipsaenprom ◽  
C. Lertsatitthanakorn
2021 ◽  
Vol 35 (4) ◽  
pp. 1757-1770
Author(s):  
Ho Yeon Choi ◽  
Jae Hyun Oh ◽  
Man Su Park ◽  
Sai Kee Oh ◽  
Yong Gap Park ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Yu-Tuan Chou ◽  
Shao-Yi Hsia ◽  
Bi-Wen Lee

Thermal comfort providing is one of the biggest uses of energy in building. For giving better human comfort, the suitable operation conditions of air-conditioner are the most important. The quick and right approach is necessary. In this paper, a small office is studied to improve office staff staying for a long period of time and achieve the thermal comfort environment for reducing energy consumption. Commercial software, Solidworks, is utilized for modeling the facilities and the Flow Simulation module for analyzing the air properties of the indoor space. Four types of air-conditioner operation are applied to set the simulated conditions, including exterior temperature, outlet temperature and wind speed of air-conditioner, and location of air-conditioner. Predicted mean vote (PMV) and predicted percent dissatisfied (PPD) at specific office areas are further acquired through dynamic anthropometry. For seeking the optimal control factors, both of the full factorial method and Taguchi method are utilized to obtain the PMV of specified location. The analyzed result shows the evaluation speed of indoor thermal comfort by Taguchi method is faster than the full-factorial method. It is concluded that software simulation with Taguchi method shows the successful implementation and higher efficiency for thermal comfort assessment.


2020 ◽  
Vol 10 (22) ◽  
pp. 8067
Author(s):  
Tomohiro Mashita ◽  
Tetsuya Kanayama ◽  
Photchara Ratsamee

Air conditioners enable a comfortable environment for people in a variety of scenarios. However, in the case of a room with multiple people, the specific comfort for a particular person is highly dependent on their clothes, metabolism, preference, and so on, and the ideal conditions for each person in a room can conflict with each other. An ideal way to resolve these kinds of conflicts is an intelligent air conditioning system that can independently control air temperature and flow at different areas in a room and then produce thermal comfort for multiple users, which we define as the personal preference of air flow and temperature. In this paper, we propose Personal Atmosphere, a machine learning based method to obtain parameters of air conditioners which generate non-uniform distributions of air temperature and flow in a room. In this method, two dimensional air-temperature and -flow distributions in a room are used as input to a machine learning model. These inputs can be considered a summary of each user’s preference. Then the model outputs a parameter set for air conditioners in a given room. We utilized ResNet-50 as the model and generated a data set of air temperature and flow distributions using computational fluid dynamics (CFD) software. We then conducted evaluations with two rooms that have two and four air conditioners under the ceiling. We then confirmed that the estimated parameters of the air conditioners can generate air temperature and flow distributions close to those required in simulation. We also evaluated the performance of a ResNet-50 with fine tuning. This result shows that its learning time is significantly decreased, but performance is also decreased.


2014 ◽  
Vol 687-691 ◽  
pp. 3216-3220
Author(s):  
Hui Tian ◽  
Zhao Hui Qi ◽  
Zhong Zan Wang

With consideration of energy utilization and environmental protection, a solar thermoelectric air conditioner is designed, its composition characteristics, working principle is introduced, and factors that affect its performance have been analyzed theoretically.


2002 ◽  
Vol 23 (2) ◽  
pp. 59-68 ◽  
Author(s):  
C. Lertsatitthanakorn ◽  
J. Hirunlabh ◽  
J. Khedari ◽  
M. Daguenet

Author(s):  
Hamza Begdouri ◽  
Luis Rosario ◽  
Muhammad M. Rahman

This study considers airflow simulations to evaluate the impact of different window air-conditioner locations on the thermal comfort in an office rooms (OR). This paper compares the air distribution for an office room by using computational fluid dynamics (CFD) modeling. The air distribution was modeled for a typical office room window air conditioning unit, air supply from a high pressure on the top and the low pressure exhaust on the bottom considering the existing manufacturing ratios for surface areas. Calculations were done for steady-state conditions including an occupant and a light source. The discharge angle for the supply grill of the AC unit was varied from 20 to 40 degrees. The position of the air conditioner was also varied and studied at 60%, 75% and 90% of the total height of the room. In addition the location of the occupant within the office room was varied. Predictions of the air movement, room temperature, room relative humidity, comfort level, and distribution of contaminants within the office room are shown. Analysis of these simulations is discussed. The positions of the air-conditioner unit, the inlet angle and the occupant position in the office room have shown to have important impacts on air quality and thermal comfort. Results are in good agreement with available experimental data.


Sign in / Sign up

Export Citation Format

Share Document