A Low-Cost Production Method of FeSi2 Power Generation Thermoelectric Modules

2015 ◽  
Vol 45 (3) ◽  
pp. 1767-1771 ◽  
Author(s):  
Hiroyuki Inoue ◽  
Takahide Kobayashi ◽  
Masahiko Kato ◽  
Seiji Yoneda
2011 ◽  
Vol 3 (7) ◽  
pp. 570-572
Author(s):  
Sangeet Markanda ◽  
◽  
R K Aggarwal R K Aggarwal

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1579
Author(s):  
Heng Zhang ◽  
Na Wang ◽  
Kai Liang ◽  
Yang Liu ◽  
Haiping Chen

A solar-aided power generation (SAPG) system effectively promotes the high efficiency and low cost utilization of solar energy. In this paper, the SAPG system is represented by conventional coal-fired units and an annular Fresnel solar concentrator (AFSC) system. The annular Fresnel solar concentrator system is adopted to generate solar steam to replace the extraction steam of the turbine. According to the steam–water matrix equation and improved Flugel formula, the variable conditions simulation and analysis of the thermo-economic index were proposed by Matlab. Furthermore, in order to obtain the range of small disturbance, the method of partial replacement is used, that is, the extraction steam of the turbine is replaced from 0 to 100% with a step size of 20%. In this work, a SAPG system is proposed and its thermo-economic index and small disturbance scope are analyzed. The results show that the SAPG system is energy-saving, and the application scope of small disturbance is related to the quantity of the extraction steam and evaluation index.


2010 ◽  
Vol 5 (3) ◽  
Author(s):  
Ohbuchi Yoshihiro ◽  
Sasaki Takanori ◽  
Sumitomo Hiroaki ◽  
Saito Susumu ◽  
Tanaka Yoshiaki

Sapporo Waterworks Bureau's (SWB's) measures for CO2 reduction started in 1982 with a hydropower project at the Moiwa Water Purification Plant (MWPP) (cap. 155,000 m3/day). Operation of the generator was temporarily discontinued in 2001 for full-scale reconstruction of the water purification plant (WPP); after the completion of the reconstruction, the power generation equipment was renewed, and the operation resumed as a joint project with a private company in 2007. Power generation is on-site since the hydropower generator within the MWPP area provides energy consumed at the MWPP and the adjoining Waterworks Museum. This power generation is expected to create an energy saving effect equivalent to 1,500 tons of CO2 and over 10 million yen of annual net benefit. In order to increase the usage rate of low-cost, clean energy like hydropower at the WPP, SWB has made a series of adjustments to the operating methods of the plant. Then, as a result, the generation covers 97% of the energy used on-site at present. Furthermore, SWB is considering introducing other hydropower facilities of this kind that harness water transmission energy from the Shiraikawa WPP (cap. 650,000 m3/day) to the major distribution reservoirs.


2010 ◽  
Vol 20 (24) ◽  
pp. 4375-4380 ◽  
Author(s):  
Eric S. Toberer ◽  
Alexandra Zevalkink ◽  
Nicole Crisosto ◽  
G. Jeffrey Snyder

2004 ◽  
Vol 19 (5) ◽  
pp. 1315-1322 ◽  
Author(s):  
J. Wang ◽  
F.Z. Peng ◽  
J. Anderson ◽  
A. Joseph ◽  
R. Buffenbarger
Keyword(s):  

2000 ◽  
Vol 10 (1) ◽  
pp. 1288-1291
Author(s):  
P.N. Kalu ◽  
S. Van Sciver ◽  
L. Brandao ◽  
V. Azeredo

2020 ◽  
Vol 13 (2) ◽  
pp. 579-591 ◽  
Author(s):  
Binbin Jiang ◽  
Xixi Liu ◽  
Qi Wang ◽  
Juan Cui ◽  
Baohai Jia ◽  
...  

A high conversion efficiency of 11.2% was realized in a low-cost PbS-based segmented thermoelectric module.


Sign in / Sign up

Export Citation Format

Share Document