Defect Emission Energy and Particle Size Effects in Fe:ZnO Nanospheres Used in Li-Ion Batteries as Anode

Author(s):  
Fatma Sarf ◽  
Hüseyin Kızıl
2020 ◽  
Vol MA2020-02 (5) ◽  
pp. 922-922
Author(s):  
Kookjin Heo ◽  
Jongkwan Lee ◽  
Min-Young Kim ◽  
Dae-yeong Im ◽  
Woo-ram Gil ◽  
...  

2021 ◽  
Vol 291 ◽  
pp. 118120
Author(s):  
Qiming Mo ◽  
Xingjian Yang ◽  
Jinjin Wang ◽  
Huijuan Xu ◽  
Wenyan Li ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (79) ◽  
pp. 75541-75551 ◽  
Author(s):  
Feng Jiang ◽  
Jian Cai ◽  
Bing Liu ◽  
Yuebing Xu ◽  
Xiaohao Liu

Palladium particles of different sizes obtained directly and indirectly by various methods were studied to clarify the particle size effect in the selective hydrogenation of cinnamaldehyde (CAL).


Author(s):  
Malcolm Stein ◽  
Chien-Fan Chen ◽  
Matthew Mullings ◽  
David Jaime ◽  
Audrey Zaleski ◽  
...  

Particle size plays an important role in the electrochemical performance of cathodes for lithium-ion (Li-ion) batteries. High energy planetary ball milling of LiNi1/3Mn1/3Co1/3O2 (NMC) cathode materials was investigated as a route to reduce the particle size and improve the electrochemical performance. The effect of ball milling times, milling speeds, and composition on the structure and properties of NMC cathodes was determined. X-ray diffraction analysis showed that ball milling decreased primary particle (crystallite) size by up to 29%, and the crystallite size was correlated with the milling time and milling speed. Using relatively mild milling conditions that provided an intermediate crystallite size, cathodes with higher capacities, improved rate capabilities, and improved capacity retention were obtained within 14 μm-thick electrode configurations. High milling speeds and long milling times not only resulted in smaller crystallite sizes but also lowered electrochemical performance. Beyond reduction in crystallite size, ball milling was found to increase the interfacial charge transfer resistance, lower the electrical conductivity, and produce aggregates that influenced performance. Computations support that electrolyte diffusivity within the cathode and film thickness play a significant role in the electrode performance. This study shows that cathodes with improved performance are obtained through use of mild ball milling conditions and appropriately designed electrodes that optimize the multiple transport phenomena involved in electrochemical charge storage materials.


2008 ◽  
Vol 147 (7-8) ◽  
pp. 258-261 ◽  
Author(s):  
Jiyin Zhao ◽  
Lei Shi ◽  
Shiming Zhou ◽  
Laifa He ◽  
Lin Chen

Sign in / Sign up

Export Citation Format

Share Document