Lateral diffusion effects in AuGe based source-drain contacts to AllnAs/InGaAs/InP doped channel MODFETs

1999 ◽  
Vol 28 (8) ◽  
pp. 944-948 ◽  
Author(s):  
A. A. Iliadis ◽  
J. K. Zahurak ◽  
T. Neal ◽  
W. T. Masselink
2021 ◽  
Author(s):  
Isidoro Gutiérrez Álvarez ◽  
José Luis Guerrero ◽  
José Enrique Martín ◽  
José Antonio Adame ◽  
Juan Pedro Bolívar

<p>A common method to measure radon exhalation rates relies on the accumulation chamber technique. Usually, this approach only considers one-dimensional gas transport within the soil that neglects lateral diffusion. However, this lateral transport could reduce the reliability of the method. In this work, several cylindrical- shaped accumulation chambers were built with different heights to test if the insertion depth of the chamber into the soil improves the reliability of the method and, in that case, if it could limit the radon lateral diffusion effects. To check this hypothesis in laboratory, two reference exhalation boxes were manufactured using phospho- gypsum from a repository located nearby the city of Huelva, in the southwest of Spain. Laboratory experiments showed that insertion depth had a deep impact in reducing the effective decay constant of the system, extending the interval where the linear fitting can be applied, and consistently obtaining reliable exhalation measurements once a minimum insertion depth is employed. Field experiments carried out in the phosphogypsum repository showed that increasing the insertion depth could reduce the influence of external effects, increasing the re- peatability of the method. These experiments provided a method to obtain consistent radon exhalation mea- surements over the phosphogypsum repository.</p>


1995 ◽  
Vol 380 ◽  
Author(s):  
Gregory F. Redinbo ◽  
Harold G. Craighead

ABSTRACTWe have investigated the technique of implantation enhanced interdiffusion (IEI) for optical nanostructure fabrication in strained InxGal-xAs/GaAs quantum wells. Implantation masks with widths from 40 nm to 40 μm were fabricated on the surface of InxGal-xAs/GaAs (x+0.1, 0.2) 3.5 nm quantum well material which was implanted with 100 kV As+ with doses ranging from 5 × 1012 to 8.5× 1013 ions/cm2. After mask removal and a high temperature anneal, cathodoluminescence (CL) spectroscopy was used to investigate the optical properties of the resulting structures. We have measured electron-heavy hole recombination energy shifts due to quantum well interdiffusion of up to 60 meV for the highest doses used here with broad area implants. However, while quantum well emission under large (40 μm) masks is preserved, smaller masks show an emission blue shift not due to ions penetrating through the mask. A simple model of the width dependence of this shift yields an enhanced lateral diffusion length of approximately 1 μm which is many times larger than the lateral straggle of the implanted As+. We conclude that lateral diffusion effects may impose a limit on nanostructure fabrication in the InxGal-xAs/GaAs system with this technique.


Author(s):  
Michael Edidin

Cell surface membranes are based on a fluid lipid bilayer and models of the membranes' organization have emphasised the possibilities for lateral motion of membrane lipids and proteins within the bilayer. Two recent trends in cell and membrane biology make us consider ways in which membrane organization works against its inherent fluidity, localizing both lipids and proteins into discrete domains. There is evidence for such domains, even in cells without obvious morphological polarity and organization [Table 1]. Cells that are morphologically polarised, for example epithelial cells, raise the issue of membrane domains in an accute form.The technique of fluorescence photobleaching and recovery, FPR, was developed to measure lateral diffusion of membrane components. It has also proven to be a powerful tool for the analysis of constraints to lateral mobility. FPR resolves several sorts of membrane domains, all on the micrometer scale, in several different cell types.


2015 ◽  
Vol 4 (2) ◽  
pp. 37-50 ◽  
Author(s):  
V.Prabhakara Reddy ◽  
◽  
RAMACHANDRUNI V M S S KIRAN KUMAR ◽  
G.Viswanatha Reddy ◽  
P.Durga Prasad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document