recombination energy
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 1)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Xuan Liu ◽  
Yang Liu ◽  
Yongfeng Ni ◽  
Ping Fu ◽  
Xuchao Wang ◽  
...  

Increasing electroluminescene quantum efficiency (EQEEL) of photoactive layer to reduce non-radiative recombination energy loss (Eloss) has been demonstrated an effective strategy to improve open-circuit voltage (Voc) of organic solar cells...



2020 ◽  
Vol 501 (1) ◽  
pp. 676-682
Author(s):  
F Lagos ◽  
M R Schreiber ◽  
M Zorotovic ◽  
B T Gänsicke ◽  
M P Ronco ◽  
...  

ABSTRACT The discovery of a giant planet candidate orbiting the white dwarf WD 1856+534 with an orbital period of 1.4 d poses the questions of how the planet reached its current position. We here reconstruct the evolutionary history of the system assuming common envelope evolution as the main mechanism that brought the planet to its current position. We find that common envelope evolution can explain the present configuration if it was initiated when the host star was on the asymptotic giant branch, the separation of the planet at the onset of mass transfer was in the range 1.69–2.35 au, and if in addition to the orbital energy of the surviving planet either recombination energy stored in the envelope or another source of additional energy contributed to expelling the envelope. We also discuss the evolution of the planet prior to and following common envelope evolution. Finally, we find that if the system formed through common envelope evolution, its total age is in agreement with its membership to the Galactic thin disc. We therefore conclude that common envelope evolution is at least as likely as alternative formation scenarios previously suggested such as planet–planet scattering or Kozai–Lidov oscillations.



2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Haochen Fan ◽  
Fengzhu Li ◽  
Pengcheng Wang ◽  
Zhenkun Gu ◽  
Jin-Hua Huang ◽  
...  

Abstract Defects from grain interiors and boundaries of perovskite films cause significant nonradiative recombination energy loss, and thus perovskite films with controlled crystallinity and large grains is critical for improvement of both photovoltaic performance and stability for perovskite-based solar cells. Here, a methylamine (MA0) gas-assisted crystallization method is developed for fabrication of methylammonium lead iodide (MAPbI3) perovskite films. In the process, the perovskite film is formed via controlled release of MA0 gas molecules from a liquid intermediate phase MAPbI3·xMA0. The resulting perovskite film comprises millimeter-sized grains with (110)-uniaxial crystallographic orientation, exhibiting much low trap density, long carrier lifetime, and excellent environmental stability. The corresponding perovskite solar cell exhibits a power conversion efficiency (PCE) of ~ 21.36%, which is among the highest reported for MAPbI3-based devices. This method provides important progress towards the fabrication of high-quality perovskite thin films for low-cost, highly efficient and stable perovskite solar cells.



2020 ◽  
Vol 499 (1) ◽  
pp. 1154-1171 ◽  
Author(s):  
Ryosuke Hirai ◽  
Toshiki Sato ◽  
Philipp Podsiadlowski ◽  
Alejandro Vigna-Gómez ◽  
Ilya Mandel

ABSTRACT We explore a new scenario for producing stripped-envelope supernova progenitors. In our scenario, the stripped-envelope supernova is the second supernova of the binary, in which the envelope of the secondary was removed during its red supergiant phase by the impact of the first supernova. Through 2D hydrodynamical simulations, we find that ∼50–90 ${{\ \rm per\ cent}}$ of the envelope can be unbound as long as the pre-supernova orbital separation is ≲5 times the stellar radius. Recombination energy plays a significant role in the unbinding, especially for relatively high mass systems (≳18 M⊙). We predict that more than half of the unbound mass should be distributed as a one-sided shell at about ∼10–100 pc away from the second supernova site. We discuss possible applications to known supernova remnants such as Cassiopeia A, RX J1713.7−3946, G11.2−0.3, and find promising agreements. The predicted rate is ∼0.35–1${{\ \rm per\ cent}}$ of the core-collapse population. This new scenario could be a major channel for the subclass of stripped-envelope or type IIL supernovae that lack companion detections like Cassiopeia A.





2020 ◽  
Vol 494 (4) ◽  
pp. 5333-5349 ◽  
Author(s):  
Thomas A Reichardt ◽  
Orsola De Marco ◽  
Roberto Iaconi ◽  
Luke Chamandy ◽  
Daniel J Price

ABSTRACT During the common-envelope binary interaction, the expanding layers of the gaseous common envelope recombine and the resulting recombination energy has been suggested as a contributing factor to the ejection of the envelope. In this paper, we perform a comparative study between simulations with and without the inclusion of recombination energy. We use two distinct setups, comprising a 0.88- and 1.8-M⊙ giants, that have been studied before and can serve as benchmarks. In so doing, we conclude that (i) the final orbital separation is not affected by the choice of equation of state (EoS). In other words, simulations that unbind but a small fraction of the envelope result in similar final separations to those that, thanks to recombination energy, unbind a far larger fraction. (ii) The adoption of a tabulated EoS results in a much greater fraction of unbound envelope and we demonstrate the cause of this to be the release of recombination energy. (iii) The fraction of hydrogen recombination energy that is allowed to do work should be about half of that which our adiabatic simulations use. (iv) However, for the heavier star simulation, we conclude that it is helium and not hydrogen recombination energy that unbinds the gas and we determine that all helium recombination energy is thermalized in the envelope and does work. (v) The outer regions of the expanding common envelope are likely to see the formation of dust. This dust would promote additional unbinding and shaping of the ejected envelope into axisymmetric morphologies.



2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Logan J. Prust

The common envelope phase in binary star systems is simulated using the 3-D moving-mesh hydrodynamic code MANGA. Improvements to MANGA to improve accuracy and computation time are discussed. Two open questions in the physics of common envelope evolution are investigated. The effects of tidal forces present before the onset of a common envelope phase are explored by comparing simulations in which the giant star is initialized with varying degrees of rotation. The role of hydrogen recombination energy is investigated by using two different equations of state, only one of which includes the effects of recombination. Rotation is shown to increase the final binary separation, while recombination energy decreases the separation. Future improvements to MANGA to capture additional physics present in common envelopes are discussed.





2019 ◽  
Vol 490 (2) ◽  
pp. 2550-2566 ◽  
Author(s):  
Roberto Iaconi ◽  
Orsola De Marco

ABSTRACT We present a comparative study between the results of most hydrodynamic simulations of the common envelope binary interaction to date and observations of post-common envelope binaries. The goal is to evaluate whether this data set indicates the existence of a formula that may predict final separations of post-common envelope systems as a function of pre-common envelope parameters. Some of our conclusions are not surprising while others are more subtle. We find that: (i) Values of the final orbital separation derived from common envelope simulations must at this time be considered upper limits. Simulations that include recombination energy do not seem to have systematically different final separations; these and other simulations imply αCE < 0.6–1.0. At least one simulation, applicable to double-degenerate systems, implies αCE < 0.2. (ii) Despite large reconstruction errors, the post-RGB observations reconstructed parameters are in agreement with some of the simulations. The post-AGB observations behave instead as if they had a systematically lower value of αCE. The lack of common envelope simulations with low-mass AGB stars leaves us with no insight as to why this is the case. (iii) The smallest mass companion that survives the common envelope with intermediate mass giants is 0.05–0.1 M⊙. (iv) Observations of binaries with separations larger than ∼10 R⊙, tend to have high M2/M1 mass ratios and may go through a relatively long phase of unstable Roche lobe mass transfer followed by a weakened common envelope (or with no common envelope at all). (v) The effect of the spatial resolution and of the softening length on simulation results remains poorly quantified.



2019 ◽  
Vol 53 (9) ◽  
pp. 1154-1157 ◽  
Author(s):  
V. V. Utochkin ◽  
V. Ya. Aleshkin ◽  
A. A. Dubinov ◽  
V. I. Gavrilenko ◽  
N. S. Kulikov ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document