Electrochemical Corrosion and In Vitro Bioactivity of SiO2:ZrO2-Coated 316L Stainless Steel in Simulated Body Fluid

2015 ◽  
Vol 24 (8) ◽  
pp. 3056-3067 ◽  
Author(s):  
A. Srinivasan ◽  
N. Rajendran
Materials ◽  
2017 ◽  
Vol 11 (1) ◽  
pp. 26 ◽  
Author(s):  
Mohamed Hussein ◽  
Madhan Kumar ◽  
Robin Drew ◽  
Nasser Al-Aqeeli

2016 ◽  
Author(s):  
S. A. Syed Nuzul Fadzli ◽  
S. Roslinda ◽  
Firuz Zainuddin ◽  
Hamisah Ismail

2011 ◽  
Vol 332-334 ◽  
pp. 1951-1954 ◽  
Author(s):  
Jia Horng Lin ◽  
Wen Cheng Chen ◽  
Jin Jia Hu ◽  
Yueh Sheng Chen ◽  
Shih Peng Wen ◽  
...  

Biodegradable polymer has been widely used in surgical suture, dressing, artificial bone and other bone-related applications. Studies have demonstrated that metals, such as titanium, titanium alloys or 316L stainless steel, can be widely used in dental and maxillofacial surgeries. The present study aimed to fabricate a scaffold with a blend of multilayer polylactic acid (PLA) ply yarns with 316L stainless steel (SS) braids, which was then immersed in simulated body fluid (SBF), forming the PLA/SS composite braid with hydroxylapatite deposition. After being immersed in SBF for 14 days, the PLA/SS composite braid was covered with precipitate which was confirmed to be apatite deposition according to surface observation and EDS evaluation.


2011 ◽  
Vol 471-472 ◽  
pp. 325-330 ◽  
Author(s):  
K. Venkateswarlu ◽  
N. Rameshbabu ◽  
Arumugam Chandra Bose ◽  
V. Muthupandi ◽  
S. Subramanian

Nanostructured titania/hydroxyapatite (HA) composite layer was developed on commercially pure titanium (Cp Ti) implant material by plasma electrolytic processing (PEP) technique in order to improve its bioactivity and corrosion resistance under physiological conditions. The phases present in the developed composite layer were studied by X-ray diffraction (XRD) technique. The surface morphology and thickness of the composite layers were observed by scanning electron microscopy (SEM). The corrosion characteristics of the developed layer were studied by potentiodynamic polarization scan under simulated body fluid (7.4 pH Hanks solution) and simulated osteoclast (4.5 pH) conditions. The in-vitro bioactivity of the composite layers was studied by using Kokubu’s simulated body fluid (SBF) solution. The X-ray diffractograms reveal the presence of anatase TiO2 and HA phases in the developed layer. The SEM results confirm the pore-free morphology of the implant material surface and the thickness of the developed composite layer was observed to be 110 ± 5 µm for 12 min of PEP. The potentiodynamic polarization study shows an improved corrosion resistance and the in-vitro bioactivity test results indicate enhanced apatite forming ability of PEP treated Cp Ti surfaces compared to that of the untreated Cp Ti, under simulated body fluid conditions.


2011 ◽  
Vol 493-494 ◽  
pp. 582-587 ◽  
Author(s):  
Marziyeh Abbasi-Shahni ◽  
Saeed Hesaraki ◽  
Ali Asghar Behnam-Ghader ◽  
Masoud Hafezi-Ardakani

In this study, nanocomposites based on of β-tri calcium phosphate (β-TCP) and 2.5-10 wt% merwinite nanoparticles were prepared and sintered at 1100-1300°c.The mechanical properties were investigated by measuring compressive strength and fracture toughness. Structural properties were evaluated by XRD, TEM and SEM analysis, and the in vitro bioactivity was studied by soaking the samples in simulated body fluid (SBF). The mechanical strength of the sintered samples wereincreased, by increasing the amount of merwinite phase up to 5 wt%, whereas it decreased when the samples were sintered at 1100 and 1200°c. Nanostructured calcium phosphate layer was formed on the surfaces of the nanocomposites within 1 day immersion in simulated body fluid. Because of appropriate mechanical properties the composite is suggested to be used as substitute for hard tissue.


2020 ◽  
Vol 31 (1) ◽  
pp. 11-18
Author(s):  
Aisha Hendy ◽  
Jehan Elnady ◽  
Nazly Hassan ◽  
T. Tamer ◽  
Amal Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document