Optimized Thermomechanical Processing for Fine-Grained Dual-Phase Microstructure Using Deformation-Induced Ferrite Transformation

2020 ◽  
Vol 29 (7) ◽  
pp. 4260-4274
Author(s):  
S. K. Rajput ◽  
Yashwant Mehta ◽  
G. P. Chaudhari ◽  
S. K. Nath
2016 ◽  
Vol 879 ◽  
pp. 90-94 ◽  
Author(s):  
Atsushi Ito ◽  
Akinobu Shibata ◽  
Nobuhiro Tsuji

As third generation advanced high strength steels (AHSS) managing both high strength and good ductility/formability, medium manganese steels containing 3-7 wt% Mn have attracted attentions recently. However, the fundamental microstructure evolution during thermomechanical processing and heat treatments in medium-Mn steels is still unclear. In the present study, changes in microstructure and mechanical properties during various heat treatments and thermomechanical processes of 4Mn-0.1%C steel were studied. It was clarified from dilatometric measurements that ferrite transformation in the 4Mn-0.1C steel was quite slow, so that fully martensitic structures were obtained in many cases after cooling from austenite. On the other hand, hot-deformation of austenite greatly accelerated ferrite transformation, and dual phase microstrcutures composed of ferrite and martensite could be obtained. The dual phase steel showed good combinations of high strength and adequate tensile ductility.


2017 ◽  
Vol 703 ◽  
pp. 293-303 ◽  
Author(s):  
C.P. Scott ◽  
F. Fazeli ◽  
B. Shalchi Amirkhiz ◽  
I. Pushkareva ◽  
S.Y.P. Allain

2018 ◽  
Vol 385 ◽  
pp. 424-429 ◽  
Author(s):  
Shamil Mukhtarov ◽  
Farid Z. Utyashev ◽  
Ruslan Shakhov

It is known that different parts of the gas turbine engine discs are operated at different temperature and load. Therefore, it is advisable to make such components out of nickel-based superalloys with a regulated structure that provides them the best operational properties. It is important to know the thermomechanical treatment for their processing to form such structures. Research of the deformation behavior and the microstructure evolution of nickel-based superalloys were carried out on small specimens. The accumulated strains and the stress distribution in specimens were determined during simulation. It is possible to predict structure formation on the basis of a deflected mode. Verification was carried out by isothermal upsetting of specimens out of superalloys at the temperature and strain rates determined by simulation. Thermomechanical treatments of the superalloys for different microstructure formation were defined. The features of the microstructure formation are shown depending on the chemical and phase composition of the alloys. Hot deformation of the ATI Allvac 718Plus superalloy leads to dissolution of the gamma prime phase that facilitates the deformation capacity. Increasing the alloyage of superalloys, including rhenium, leads to formation of a necklace structure instead of a homogeneous fine-grained structure for less alloyed superalloys at the same strain.


2014 ◽  
Vol 783-786 ◽  
pp. 1067-1072 ◽  
Author(s):  
K. Mukherjee ◽  
L.S. Thomas ◽  
C. Bos ◽  
David K. Matlock ◽  
John G. Speer

The potential to utilize controlled thermal processing to minimize banding in a DP780 steel with 2 wt pct Mn was evaluated on samples processed on a Gleeble® 3500 thermomechanical processing simulator. All processing histories were selected to result in final dual-phase steel microstructures simulating microstructures achievable during annealing of initially cold rolled sheet. Strip samples were processed to evaluate the effects of heating rate, annealing time, annealing temperature, and cooling rate. The degree of banding in the final microstructures was evaluated with standard light optical microscopic techniques. Results are presented to illustrate that the extent of banding depended on control of both heating and cooling rates, and a specific processing history based on a two-stage heating rate can be used to minimize visible banding in selected final heat treated products.


Sign in / Sign up

Export Citation Format

Share Document