Corrosion Resistance of Aluminum-Copper Alloys with Different Grain Structures

Author(s):  
Alejandra S. Román ◽  
Claudia M. Méndez ◽  
Claudio A. Gervasi ◽  
Raúl B. Rebak ◽  
Alicia E. Ares
Alloy Digest ◽  
1980 ◽  
Vol 29 (2) ◽  

Abstract Copper Alloy No. 185 has fairly high electrical and thermal conductivity in combination with good strength and hardnes. It is an age-hardening type of alloy containing nominally 0.10% silver; it formerly was known as one of the Chromium Copper alloys. Among its many applications are circuit breaker parts, electrode holder jaws, switch contacts and electrical and thermal conductors requiring greater strength than copper. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-390. Producer or source: Copper and copper alloy mills.


Alloy Digest ◽  
2009 ◽  
Vol 58 (9) ◽  

Abstract Carpenter ACUBE 100 Alloy is cobalt-base and exhibits corrosion resistance and wear resistance. The alloy was designed as direct replacement of beryllium copper alloys. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming, heat treating, and machining. Filing Code: CO-117. Producer or source: Carpenter Specialty Alloys.


Alloy Digest ◽  
1981 ◽  
Vol 30 (5) ◽  

Abstract ULTRONZE is a copper alloy also known as Olin Alloy 654. It bridges the gap between standard high-performance copper alloys and beryllium-copper alloys, thus enabling the design of parts with properties previously only attainable with more expensive materials. The alloy has superior stress-relaxation characteristics, good bend performance and excellent corrosion resistance. Among its typical uses are electrical connectors, fuse clips and relay springs. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Cu-417. Producer or source: Olin Brass.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Satyajit Mojumder ◽  
Md Shajedul Hoque Thakur ◽  
Mahmudul Islam ◽  
Monon Mahboob ◽  
Mohammad Motalab

2000 ◽  
Author(s):  
M. Xiong ◽  
A. V. Kuznetsov

Abstract The microporosity formation in a vertical unidirectionally solidifying Al-4.1%Cu alloy casting is modeled in both microgravity and standard gravity as well as in the conditions of decreased (Moon, Mars) and increased (Jupiter) gravity. Due to the unique opportunities offered by a low-gravity environment (absence of metallostatic pressure and of natural convection in the solidifying alloy) future microgravity experiments will significantly contribute to attaining a better physical understanding of the mechanisms of microporosity formation. One of the aims of the present theoretical investigation is to predict what microporosity patterns will look like in microgravity in order to help plan a future microgravity experiment. To perform these simulations, the authors suggest a novel three-phase model of solidification that accounts for the solid, liquid, and gas phases in the mushy zone. This model accounts for heat transfer, fluid flow, macrosegregation, and microporosity formation in the solidifying alloy. Special attention is given to the investigation of the influence of microporosity formation on the inverse segregation. Parametric analyses for different initial hydrogen concentrations and different gravity conditions are carried out.


Sign in / Sign up

Export Citation Format

Share Document