Suspension Plasma-Sprayed ZnFe2O4 Nanostructured Coatings for ppm-Level Acetone Detection

2017 ◽  
Vol 26 (4) ◽  
pp. 728-734 ◽  
Author(s):  
Jiajun You ◽  
Xia Chen ◽  
Bingbing Zheng ◽  
Xin Geng ◽  
Chao Zhang
Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Huimin Gong ◽  
Changhui Zhao ◽  
Gaoqiang Niu ◽  
Wei Zhang ◽  
Fei Wang

Exhaled acetone is one of the representative biomarkers for the noninvasive diagnosis of type-1 diabetes. In this work, we have applied a facile two-step chemical bath deposition method for acetone sensors based on α-Fe2O3/SnO2 hybrid nanoarrays (HNAs), where one-dimensional (1D) FeOOH nanorods are in situ grown on the prefabricated 2D SnO2 nanosheets for on-chip construction of 1D/2D HNAs. After annealing in air, ultrafine α-Fe2O3 nanorods are homogenously distributed on the surface of SnO2 nanosheet arrays (NSAs). Gas sensing results show that the α-Fe2O3/SnO2 HNAs exhibit a greatly enhanced response to acetone (3.25 at 0.4 ppm) at a sub-ppm level compared with those based on pure SnO2 NSAs (1.16 at 0.4 ppm) and pure α-Fe2O3 nanorods (1.03 at 0.4 ppm), at an operating temperature of 340°C. The enhanced acetone sensing performance may be attributed to the formation of α-Fe2O3–SnO2 n-n heterostructure with 1D/2D hybrid architectures. Moreover, the α-Fe2O3/SnO2 HNAs also possess good reproducibility and selectivity toward acetone vapor, suggesting its potential application in breath acetone analysis.


2018 ◽  
Vol 531 ◽  
pp. 74-82 ◽  
Author(s):  
Yiqun Zhang ◽  
Linsheng Zhou ◽  
Yueying Liu ◽  
Deye Liu ◽  
Fengmin Liu ◽  
...  

2020 ◽  
Vol 31 (19) ◽  
pp. 16539-16547
Author(s):  
Jian Li ◽  
Chen Chen ◽  
Jialin Li ◽  
Shijun Li ◽  
Chengjun Dong

10.5772/64316 ◽  
2016 ◽  
Author(s):  
Zaki Ahmad ◽  
Asad Ullah Khan ◽  
Robina Farooq ◽  
Tahir Saif ◽  
Naila Riaz Mastoi

Author(s):  
Venkateshwarlu Bolleddu ◽  
Vikranth Racherla ◽  
Partha Pratim Bandyopadhyay

Thermally sprayed coatings from nanostructured agglomerated ceramic powders have received considerable attention in recent past due to their improved performance over corresponding coatings from conventional powders. When complete melting of a fraction of agglomerated particles is prevented, unmelted and partially melted (PM) particles appear as inclusions within the fully melted matrix resulting in a bi-modal coating microstructure. In addition to uniform mixing of constituents, the enhanced performance of nanostructured coatings has also been attributed to above described bi-modal nature of the microstructure. Interestingly, even though nitrogen is cheaper and more widely available than argon, essentially all earlier works on plasma spraying of nanostructured coatings use argon as the primary plasma gas. In this chapter, the effect of critical plasma spray parameter (CPSP), which controls the specific power input to the plasma gas, on microstructural and wear characteristics of conventional and nanostructured alumina-titania (Al2O3-13wt%TiO2) coatings is studied systematically.


Author(s):  
K.R. Subramanian ◽  
A.H. King ◽  
H. Herman

Plasma spraying is a technique which is used to apply coatings to metallic substrates for a variety of purposes, including hardfacing, corrosion resistance and thermal barrier applications. Almost all of the applications of this somewhat esoteric fabrication technique involve materials in hostile environments and the integrity of the coatings is of paramount importance: the effects of process variables on such properties as adhesive strength, cohesive strength and hardness of the substrate/coating system, however, are poorly understood.Briefly, the plasma spraying process involves forming a hot plasma jet with a maximum flame temperature of approximately 20,000K and a gas velocity of about 40m/s. Into this jet the coating material is injected, in powder form, so it is heated and projected at the substrate surface. Relatively thick metallic or ceramic coatings may be speedily built up using this technique.


Author(s):  
P. Frayssinet ◽  
J. Hanker ◽  
D. Hardy ◽  
B. Giammara

Prostheses implanted in hard tissues cannot be processed for electron microscopic examination or microanalysis in the same way as those in other tissues. For these reasons, we have developed methods allowing light and electron microscopic studies as well as microanalysis of the interface between bone and a metal biomaterial coated by plasma-sprayed hydroxylapatite(HA) ceramic.An HA-coated titanium hip prosthesis (Corail, Landos, France), which had been implanted for two years, was removed after death (unrelated to the orthopaedic problem). After fixation it was dehydrated in solutions of increasing ethanol concentration prior to embedment in polymethylmethacrylate(PMMA). Transverse femur sections were obtained with a diamond saw and the sections then carefully ground to a thickness of 200 microns. Plastic-embedded sections were stained for calcium with a silver methenamine modification of the von Kossa method for calcium staining and coated by carbon. They have been examined by back-scatter SEM on an ISI-SS60 operated at 25 KV. EDAX has been done on cellular inclusions and extracellular bone matrix.


Sign in / Sign up

Export Citation Format

Share Document