A meta-analysis of experimental warming effects on woody plant growth and photosynthesis in forests

2017 ◽  
Vol 29 (3) ◽  
pp. 727-733 ◽  
Author(s):  
Yongge Yuan ◽  
Litao Ge ◽  
Haishui Yang ◽  
Weizheng Ren
Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2014 ◽  
pp. 37-89 ◽  
Author(s):  
Michael T. Rose ◽  
Antonio F. Patti ◽  
Karen R. Little ◽  
Alicia L. Brown ◽  
W. Roy Jackson ◽  
...  

Oikos ◽  
2013 ◽  
Vol 123 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Glenn R. Moncrieff ◽  
Simon Chamaillé-Jammes ◽  
William J. Bond

2017 ◽  
Vol 416 (1-2) ◽  
pp. 309-323 ◽  
Author(s):  
Rachel L. Rubin ◽  
Kees Jan van Groenigen ◽  
Bruce A. Hungate

1999 ◽  
Vol 69 (4) ◽  
pp. 491 ◽  
Author(s):  
A. M. Arft ◽  
M. D. Walker ◽  
J. Gurevitch ◽  
J. M. Alatalo ◽  
M. S. Bret-Harte ◽  
...  

2010 ◽  
Vol 37 (6) ◽  
pp. 555 ◽  
Author(s):  
Beth R. Loveys ◽  
John J. G. Egerton ◽  
Dan Bruhn ◽  
Marilyn C. Ball

The relative effects of disturbance (here defined as bare soil), competition for edaphic resources, thermal interference and elevated [CO2] on growth of tree seedlings in grasslands were studied under field conditions. Snow gum (Eucalyptus pauciflora Sieb. ex Spreng.) seedlings were grown in open-top chambers flushed with either ambient or elevated [CO2] from March 2004 to January 2005 (autumn to summer). These seedlings were planted into three treatments (i.e. bare soil, soil covered with straw or soil supporting a sward of live pasture grass) to separate effects of grass on seedling growth into those due to competition with grass for soil resources or to alteration of the thermal environment caused by a grassy surface (Ball et al. 2002). After the first major autumn frost, seedlings growing in competition with grass lost 59% of their canopy area, whereas those growing in bare soil or straw suffered negligible damage. These results reveal the complexity of competitive inhibition of plant growth in which ineffective competition for resources such as soil water enhances the vulnerability of the plant to abiotic stress, in this case frost. Tree seedlings growing in bare soil and straw commenced growth earlier in spring than those growing in competition with grass, where soil moisture was consistently lowest. Under ambient [CO2], growth was greater in bare soil than in straw, consistent with thermal interference, but these differences disappeared under elevated [CO2]. Elevated [CO2] significantly increased biomass accumulation for seedlings growing in bare soil and straw treatments, but not in grass. Thus, elevated [CO2] alleviated apparent thermal interference of seedling growth in spring but did not overcome adverse effects on seedling growth of either competitive reduction in soil resources or competitive enhancement of environmental stress. Nevertheless, elevated [CO2] could promote invasion of grasslands due to enhancement of woody plant growth in bare soil created by disturbances.


Sign in / Sign up

Export Citation Format

Share Document