Repetitive transcranial magnetic stimulation causes significant changes of chemical substances in the brain of rabbits with experimental intracerebral hemorrhage

2008 ◽  
Vol 2 (4) ◽  
pp. 406-409 ◽  
Author(s):  
Tiecheng Guo ◽  
Xuebing Cao ◽  
Limin Xia
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xueyun Chen ◽  
Shu Chen ◽  
Weidi Liang ◽  
Fang Ba

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive and painless technique that has been applied for the treatments of diverse neurodegenerative disorders. In the current study, its anti-Alzheimer’s disease (AD) effect was assessed and the mechanism driving the effect was explored. The AD symptoms were induced via the intracranial injection of Aβ1-42 in mice and then treated with rTMS of 1 Hz or 10 Hz. The anti-AD effect of rTMS was assessed by Morris water maze (MWM), histological staining and western blotting. The results showed that rTMS administrations of both frequencies improved the cognitive function and suppressed neuron apoptosis in AD mice. Moreover, the treatment also increased the brain BDNF, NGF, and doublecortin levels, which represented the increased viability of neurons by rTMS. The injection of Aβ1-42 also increased the expressions of p-GSK-3β, p-Tau, and p-β-catenin and suppressed the level of total β-catenin. After the treatments of rTMS, the level of β-catenin was restored, indicating the activation of β-catenin signaling. In conclusion, the findings outlined in the current study demonstrated that the anti-AD effect of rTMS was associated with the activation of β-catenin, which would promote the survival of neurons.


2018 ◽  
Vol 34 (2) ◽  
pp. 79-86 ◽  
Author(s):  
Simon Taïb ◽  
Christophe Arbus ◽  
Anne Sauvaget ◽  
Marie Sporer ◽  
Laurent Schmitt ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Cuihong Zhou ◽  
Min Cai ◽  
Ying Wang ◽  
Wenjun Wu ◽  
Yuezhen Yin ◽  
...  

The protective effects of repetitive transcranial magnetic stimulation (rTMS) on myelin integrity have been extensively studied, and growing evidence suggests that rTMS is beneficial in improving cognitive functions and promoting myelin repair. However, the association between cognitive improvement due to rTMS and changes in brain lipids remains elusive. In this study, we used the Y-maze and 3-chamber tests, as well as a mass spectrometry-based lipidomic approach in a CPZ-induced demyelination model in mice to assess the protective effects of rTMS on cuprizone (CPZ)-induced cognitive impairment and evaluate changes in lipid composition in the hippocampus, prefrontal cortex, and striatum. We found that CPZ induced cognitive impairment and remarkable changes in brain lipids, specifically in glycerophospholipids. Moreover, the changes in lipids within the prefrontal cortex were more extensive, compared to those observed in the hippocampus and striatum. Notably, rTMS ameliorated CPZ-induced cognitive impairment and partially normalized CPZ-induced lipid changes. Taken together, our data suggest that rTMS may reverse cognitive behavioral changes caused by CPZ-induced demyelination by modulating the brain lipidome, providing new insights into the therapeutic mechanism of rTMS.


2014 ◽  
Vol 94 (1) ◽  
pp. 139-150 ◽  
Author(s):  
Jessica M. Cassidy ◽  
Bernadette T. Gillick ◽  
James R. Carey

Repetitive transcranial magnetic stimulation (rTMS) is emerging as a potentially valuable intervention to augment the effects of behavioral therapy for stroke. When used in conjunction with other therapies, rTMS embraces the concept of metaplasticity. Due to homeostatic mechanisms inherent to metaplasticity, interventions known to be in isolation to enhance excitability can interact when applied successively under certain timing conditions and produce enhanced or opposite effects. Similar to “muscular wisdom,” with its self-protective mechanisms, there also appears to be “synaptic wisdom” in neural networks with homeostatic processes that prevent over- and under-excitability. These processes have implications for both enhancing and suppressing the excitability effects from behavioral therapy. The purpose of this article is to relate the concept of metaplasticity, as derived from studies in humans who are healthy, to stroke rehabilitation and consider how it can be leveraged to maximize stroke outcomes.


2020 ◽  
Vol 10 (9) ◽  
pp. 648
Author(s):  
Xiaoxia Yuan ◽  
Yuan Yang ◽  
Na Cao ◽  
Changhao Jiang

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain-stimulation technique that transiently modulates cerebral cortex excitability, achieving overall positive results in poststroke motor-function recovery. Excessive inhibition of the ipsilesional-affected hemisphere by the contralesional-unaffected hemisphere has seriously hindered poststroke motor-function recovery. Hence, intracortical disinhibition can be used as an approach to managing poststroke brain injury. This technique promotes neural plasticity for faster motor-function recovery. rTMS relieves unilateral inhibition of the brain function by regulatinga interhemispheric-imbalanced inhibition. This paper summarized 12 studies from 2016 to date, focusing on rTMS on motor function after acute and chronic stroke by regulating the interhemispheric imbalance of inhibitory inputs. Although rTMS studies have shown promising outcomes on recovery of motor functions in stroke patients, different intervention methods may lead to discrepancies in results. A uniform optimal stimulus model cannot routinely be used, mainly due to the stimulus schemes, stroke types and outcome-measuring differences among studies. Thus, the effect of rTMS on poststroke motor-function recovery should be investigated further to standardize the rTMS program for optimal poststroke motor-function recovery. More randomized, placebo-controlled clinical trials with standardized rTMS protocols are needed to ensure the effectiveness of the treatment.


CNS Spectrums ◽  
1997 ◽  
Vol 2 (1) ◽  
pp. 21-25 ◽  
Author(s):  
Eric M. Wassermann

AbstractRepetitive transcranial magnetic stimulation (rTMS) is a relatively new technique for activating the cerebral cortex through the scalp and skull. By inducing electrical currents in the brain, rTMS is able to produce a variety of effects, including muscle twitching, changes in motor performance, disruption of cognitive and perceptual processes, and changes in mood. Although the technique is noninvasive and easily tolerated by patients and normal subjects, rTMS can produce epileptic seizures and, potentially, other undesirable effects on brain function. Further studies will be required to fully define the safe ranges of the stimulation parameters.


2021 ◽  
pp. 1-12
Author(s):  
Jingyu Huang ◽  
Shixie Jiang ◽  
Ryan Wagoner ◽  
Hao Yang ◽  
Glenn Currier ◽  
...  

Repetitive transcranial magnetic stimulation (rTMS) of the brain is an effective clinical treatment for psychiatric disorders. Noninvasive neuroimaging during rTMS allows visualization of cortical brain activations and responses, and it is a potential tool for investigating the neurophysiological response occurring actively during stimulation. In this paper, we present a fast diffuse optical tomography (DOT) approach for three-dimensional brain mapping of hemodynamics during rTMS. Eight healthy subjects were enrolled in the study. These subjects received 10 Hz stimulation with 80%and 100%of resting motor threshold (rMT), respectively, for 4 seconds for each stimulation. Significant hemodynamic activation was observed in all cases with the strongest response when 100%rMT stimulation was applied. This work demonstrates that fast DOT has the potential to become a powerful tool for noninvasive three-dimensional imaging of the brain during rTMS.


Sign in / Sign up

Export Citation Format

Share Document