Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010

2018 ◽  
Vol 13 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Duanyang Xu ◽  
Alin Song ◽  
Dajing Li ◽  
Xue Ding ◽  
Ziyu Wang
2009 ◽  
Vol 52 (6) ◽  
pp. 855-868 ◽  
Author(s):  
DuanYang Xu ◽  
XiangWu Kang ◽  
ZhiLi Liu ◽  
DaFang Zhuang ◽  
JianJun Pan

2011 ◽  
Vol 21 (5) ◽  
pp. 926-936 ◽  
Author(s):  
Duanyang Xu ◽  
Chunlei Li ◽  
Dafang Zhuang ◽  
Jianjun Pan

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaoyan Yang ◽  
Wenxiang Wu ◽  
Linda Perry ◽  
Zhikun Ma ◽  
Ofer Bar-Yosef ◽  
...  

2018 ◽  
Vol 642 ◽  
pp. 619-628 ◽  
Author(s):  
Jaime Madrigal-González ◽  
Enrique Andivia ◽  
Miguel A. Zavala ◽  
Markus Stoffel ◽  
Joaquín Calatayud ◽  
...  

2016 ◽  
Vol 13 (13) ◽  
pp. 4023-4047 ◽  
Author(s):  
Charlotte Laufkötter ◽  
Meike Vogt ◽  
Nicolas Gruber ◽  
Olivier Aumont ◽  
Laurent Bopp ◽  
...  

Abstract. Accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projections in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental Panel on Climate Change (IPCC), and determine the processes driving these changes. The models simulate small to modest decreases in global EP between −1 and −12 %. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralisation is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralisation or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralisation. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11–94 % in the Southern Ocean) and the diatom contribution to particle formation (0.6–3.8 times higher than their contribution to biomass). As a consequence, changes in diatom concentration are a strong driver for EP changes in some models but of low significance in others. Observational and experimental constraints on ecosystem structure and how the fixed carbon is routed through the ecosystem to produce export production are urgently needed in order to improve current generation ecosystem models and their ability to project future changes.


2020 ◽  
Vol 12 (24) ◽  
pp. 10395
Author(s):  
Yufei Jiao ◽  
Jia Liu ◽  
Chuanzhe Li ◽  
Wei Wang ◽  
Fuliang Yu ◽  
...  

The influence of climate change and human activities on hydrological elements has increased along with increasing dependence on water resources. Therefore, quantitative attribution of hydrological elements has received wide attention. In this study, the double mass curve (DMC) is used to assess the abrupt change point of the hydrological data series, based on which the periods with/without large-scale human activities causing runoff attenuation are separated. The land use transition matrix is then employed to analyze the land use types at different historical stages, and the sensitivities of the runoff attenuation to different land use/cover change (LUCC) categories are quantified. A soil and water assessment tool (SWAT) model that considers the underlying surface is constructed with six designed scenarios of different climate and LUCC conditions. Taking three typical mountainous basins in North China as the study area, the quantitative contributions of climate change and human activities to the water resources are identified. The results of the study have brought enlightenment to the water resource sustainable utilization and management in North China, and the methodologies can be transferred to runoff attribution analysis in water shortage areas.


2015 ◽  
Vol 12 (23) ◽  
pp. 19941-19998 ◽  
Author(s):  
C. Laufkötter ◽  
M. Vogt ◽  
N. Gruber ◽  
O. Aumont ◽  
L. Bopp ◽  
...  

Abstract. Accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralization of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projections in EP over the 21st century, generated by four marine ecosystem models under IPCC's high emission scenario RCP8.5, and determine the processes driving these changes. The models simulate small to modest decreases in global EP between −1 and −12 %. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralization is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralization or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralization. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11–94 % in the Southern Ocean) and the diatom contribution to particle formation (0.6–3.8 times lower/higher than their contribution to biomass). As a consequence, changes in diatom concentration are a strong driver for EP changes in some models but of low significance in others. Observational and experimental constraints on ecosystem structure and how the fixed carbon is routed through the ecosystem to produce export production are urgently needed in order to improve current generation ecosystem models and their ability to project future changes.


Sign in / Sign up

Export Citation Format

Share Document